• Title/Summary/Keyword: Automated Container Terminal Block

Search Result 21, Processing Time 0.036 seconds

Development of Operation Strategy to improve Efficiency for Twin Automated Transfer Crane in an Automated Container Terminal

  • Park, Byung-Joo;Choi, Hyung-Rim
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.605-611
    • /
    • 2007
  • In order to become a mega hub port, major ports all over the world are making every effort to enhance their productivity through efficiency of internal operation. Accordingly, in order to enhance the competitiveness of a container terminal, an automated container terminal is considered as the best alternative. An automated container terminal is using such automated handling equipment as AGV(Automated Guided Vehicles) and ATC(Automated Transfer Crane). The efficient equipment operation plays a critical role in enhancing the productivity of an automated container terminal. In an automated container terminal, the most important equipments are AGV and ATC. Each block of containers with a vertical layout is generally operating two ATCs. The two ATCs can be crossed or not at each block. In the case of operating crossover ATC, it has an advantage of high flexibility that ATC work is possible at both TP(Transfer Point) of each block. But it has also a disadvantage that the yard has to be operated at a low storage level of containers in the terminal yard. Recently, for automated container terminals, which are being prepared for opening in Korea, they plan to use uncrossed twin ATC in order to make the storage level of their yards high at a low cost. Therefore, studies have to be made in order to increase the efficiency of twin ATC system based on the flexibility that the crossover ATC system has. This research aims to suggest an operation strategy to improve efficiency of twin ATC at each storage block in a yard.

Allocation Model of Container Yard for A TC Optimal Operation in Automated Container Terminal

  • Kim, Hwan-Seong;Nguyen, DuyAnh
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.737-742
    • /
    • 2008
  • In this paper, we deal with an allocation model of vertical type container yard for minimizing the total ATC (Automated Transfer Crane) working time and the equivalence of ATC working load in each block on automated container terminal. Firstly, a layout of automated container terminal yard is shown The characteristic of equipment which work in the terminal and its basic assumption are given Next, an allocation model which concerns with minimizing the total working time and the equivalence of working load is proposed for effectiveness of ATC working in automated container terminal. Also, a weight values on critical function are suggested to adjust the critical values by evaluating the obtained allocation plan. For ATC allocation algorithm, we suggest a simple repeat algorithm for on-line terminal operation.

A Study on Remarshaling Operation in Automated Container Terminal (시뮬레이션을 이용한 자동화 컨테이너터미널의 이적운영규칙에 관한 연구)

  • 윤원영;이주호;최용석
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.21-29
    • /
    • 2003
  • The operation rules to remarshaling works in yard is very important in automated container terminal (ACT). However, the decision rules for conventional container terminals have some restrictions to be applied to ACT whose block layout Is vortical for berth. The objective of this study is to propose the efficient operations rules for remarshaling works of automated transfer crane (ATC) in ACTs. Then, the various operation rules are simulated to verify the proposed operation rules. The results of the simulation study on various rules are provided and discussed.

  • PDF

Allocation Model of Container Yard for Effectiveness of ATC Work in Automated Container Terminal

  • Kim, Hwan-Seong;Lee, Sang-Hun;You, Myong-Suk;Kwak, Kyu-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.74.1-74
    • /
    • 2001
  • In this paper, we deal with an allocation model of vertical type container yard for minimizing the total ATC work time and the equivalence of ATC work´s load in each block on automated container terminal. Firstly, a layout of automated container terminal yard is shown. The characteristic of equipment which is operated in the terminal and basic assumption are given. Next, an allocation model which concerns with minimizing the total work time and the equivalence of work´s load is proposed for the effectiveness of ATC work in automated container terminal. Also, a weight values on critical function are suggested to adjust the critical values by evaluating the obtained allocation plan. To find the solution of allocation model in given terminal yard situation, a GA is applied, where the real information of container is used ...

  • PDF

A Study on Simulation of Remarshalling Work in an Automated Container Terminal (자동화 컨테이너터미널의 이적작업에 관한 시뮬레이션 연구)

  • Lee Joo-Ho;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.203-208
    • /
    • 2004
  • The objective of this study is to analyze the efficiency of marshalling work using ATC(automated transfer crane) for ACT(automated container terminal). It is important fact to assignment of containers, because the character of ACT which block layout is vertical for berth and there are four other works which are inbound, oubound, loading and unloading in one block. And then there is need which assignment of containers with remarshaling work using ATCs in one block. Therefore, we analyze the efficiency of remarshaling work using simulation and suggest the assignment methodology of containers in yard

  • PDF

시뮬레이션을 이용한 자동화 컨테이너 터미널의 이적 운영규칙에 관한 연구

  • 윤원영;이주호;최용석
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.155-160
    • /
    • 2003
  • Today, for improvement of container terminal productivity, it is necessary to develop ACT(Automated Container Terminal) But, decision rules for conventional container terminals expose various limitations to be applied to ACT. Specially it is important fact to assignment of containers, because the character of ACT which block layout is vertical for berth. And then there is need which assignment of containers with remarshaling work using ATC(Automated Transfer Crane)s. The objective of this study is to provide the operation rules for remarshaling work in ACT. To analyze the proposed rules, the simulation is performed, and we show efficiency of remarshaling on various remarshaling operation rules.

  • PDF

Detection of AGV's position and orientation using laser slit beam (회전 Laser 슬릿 빔을 이용한 AGV의 위치 및 자세의 검출)

  • 박건국;김선호;박경택;안중환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • The major movement block of the containers have range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of its movement in conventional container terminal. In automated container terminal, AGV(Automated Guided Vehicle) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The automated container terminal facilities must have the docking system to guide landing line to have high speed travelling and precision positioning. The general method for docking system uses the vision system with CCD camera, infra red, and laser. This paper describes the detection of AGV's position and orientation using laser slit beam to develop docking system.

  • PDF

Models for Determining the Size of Import Container Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수입 컨테이너 장치 블록 크기 결정을 위한 모형)

  • Kim, Ki-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.705-710
    • /
    • 2007
  • The productivity of automated container terminals is significantly affected by not only the speed related performances of automated transfer cranes(ATCs) but also the sizes of container blocks. In this paper, it is discussed how to determine the size of import container blocks considering both the container handling times of an ATC and their storage space. Firstly, evaluation models are suggested for the container handling times of an ATC in a typical import container blocks. Secondly, three mathematical formulations are suggested to determine the size of import container blocks. Numerical experiments for the suggested models to determine the size of import container block are provided.

Performance evaluation of double stack vehicle at container terminal (2단 적재차량의 컨테이너 이송능력 분석)

  • Ha Tae-Young;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.255-261
    • /
    • 2005
  • The purpose of this paper is to analyze transport ability of Automated Guided Vehicle(AGV) and Double Stack Vehicle(DSV) at Automated Container Terminal(ACT). Usually, the main difference of AGV and DSV is capacity of container that they can transport between apron and yard block at once. AGV can carry out two 20 feet or one 40 feet maritime containers, but DSV can carry out four 20 feet or two 40 feet maritime containers. Therefore, DSV may improve more efficiency of stevedoring system of container terminal. In this paper, a simulation model using a graphics simulation system is developed to compare the proposed DSV with the current AGV at automated container terminal. The paper includes examples, performance tests and a discussion of simulation results.

  • PDF

Export Container Remarshaling Planning in Automated Container Terminals Considering Time Value (시간가치를 고려한 자동화 컨테이너 터미널의 수출 컨테이너 이적계획)

  • Bae, Jong-Wook;Park, Young-Man;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.75-86
    • /
    • 2008
  • A remarshalling is one of the operational strategies considered importantly at a port container terminal for the fast ship operations and heighten efficiency of slacking yard. The remarshalling rearranges the containers scattered at a yard block in order to reduce the transfer time and the rehandling time of container handling equipments. This Paper deals with the rearrangement problem, which decides to where containers are transported considering time value of each operations. We propose the mixed integer programming model minimizing the weighted total operation cost. This model is a NP-hard problem. Therefore we develope the heuristic algorithm for rearrangement problem to real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost. For the sensitivity analysis of configuration of storage and cost weight, a variety of scenarios are experimented.