• Title/Summary/Keyword: Automated Construction.

Search Result 507, Processing Time 0.027 seconds

Technical Advances in Robotic Pavement Crack Sealing Machines and Lessons Learned from the Field (도로면 유지보수를 위한 크랙실링 자동화 로봇의 개발과 응용 -현장적용을 통한 실험 결과 분석을 중심으로-)

  • Kim Young-Suk;Carl T. Haas;Sung Baek-Jun;Oh Se-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.1 s.1
    • /
    • pp.87-94
    • /
    • 2000
  • Crack sealing, a routine and necessary part of pavement maintenance, is a dangerous, costly, and labor-intensive operation. Within the North America, about ${\$}200$ million is spent annually on crack sealing, with the Texas Department of Transportation (TxDOT) spending about ${\$}7$ million annually (labor alone accounts for over 50 percent of these costs). Prompted by concerns of safety and cost, the University of Texas at Austin, in cooperation with TxDOT and the Federal Highway Administration (FHWA) has developed a unique computer-guided Automated Road Maintenance Machine (ARMM) for pavement crack sealing. In 1999, successful field tests have been undertaken in 8 States around the U.S. This paper first describes significance of the automated crack sealing and technical advances in automated crack sealers including the ARMM, developed in the U.S. It then discusses the ARMM's field implementation and performance evaluation results, and improvements and modifications suggested through the technology evaluation during the field trials. Current research efforts and future work plans in its further development are also presented in this paper.

  • PDF

Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI (IPA 및 FGI 분석을 통한 자율주행차량 핸디캡과 발생원인 분석)

  • Jeon, Hyeonmyeong;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.34-46
    • /
    • 2021
  • In order to accelerate the commercialization of self-driving cars, it is necessary to accurately identify the causes of deteriorating the driving safety of the current self-driving cars and try to improve them. This study conducted a questionnaire survey of experts studying autonomous driving in Korea to identify the causes of problems in the driving safety of autonomous vehicles and the level of autonomous driving technology in Korea. As a result of the survey, the construction section, heavy rain/heavy snow conditions, fine dust conditions, and the presence of potholes were less satisfied with the current technology level than their importance, and thus priority research and development was required. Among them, the failure of road/road facilities and the performance of the sensor itself in the construction section and the porthole, and the performance of the sensor and the absence of an algorithm were the most responsible for the situation connected to the weather. In order to realize safe autonomous driving as soon as possible, it is necessary to continuously identify and resolve the causes that hinder the driving safety of autonomous vehicles.

Intelligent Collision Prevention Technique for Construction Equipment using Ultrasound Scanning (초음파 스캐닝을 활용한 지능형 건설기계 충돌방지 기술)

  • Lee, Jaehoon;Hwang, Yeongseo;Yang, Kanghyeok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.48-54
    • /
    • 2021
  • According to the Ministry of Employment and Labor's statistics on occupational fatalities in South Korea, more than half of the fatalities in the past five years have occurred in the construction industry. The stuck-by and caught-in-between accidents associated with construction equipment is the major source of fatalities from construction sites. In order to prevent such accidents in construction sites, the government has spent lots of efforts including proposing the "special law on construction safety" and encouraging the implementation of new technology for accident prevention. However, numerous accidents are still occurred at construction sites and further efforts are still required. In this manner, this study developed a collision prevention technique that can prevent collision between equipment and worker by recognizing location and type of the nearby objects through ultrasound scanning. The study conducted a pilot experiment and the analysis results demonstrate the feasibility of achieving high performance in both object recognition and location estimation. The developed technique will contribute to prevent collision accidents at construction sites and provide the supplemental knowledge on developing automated collision prevention system for construction equipment.

Incorporating Machine Learning into a Data Warehouse for Real-Time Construction Projects Benchmarking

  • Yin, Zhe;DeGezelle, Deborah;Hirota, Kazuma;Choi, Jiyong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.831-838
    • /
    • 2022
  • Machine Learning is a process of using computer algorithms to extract information from raw data to solve complex problems in a data-rich environment. It has been used in the construction industry by both academics and practitioners for multiple applications to improve the construction process. The Construction Industry Institute, a leading construction research organization has twenty-five years of experience in benchmarking capital projects in the industry. The organization is at an advantage to develop useful machine learning applications because it possesses enormous real construction data. Its benchmarking programs have been actively used by owner and contractor companies today to assess their capital projects' performance. A credible benchmarking program requires statistically valid data without subjective interference in the program administration. In developing the next-generation benchmarking program, the Data Warehouse, the organization aims to use machine learning algorithms to minimize human effort and to enable rapid data ingestion from diverse sources with data validity and reliability. This research effort uses a focus group comprised of practitioners from the construction industry and data scientists from a variety of disciplines. The group collaborated to identify the machine learning requirements and potential applications in the program. Technical and domain experts worked to select appropriate algorithms to support the business objectives. This paper presents initial steps in a chain of what is expected to be numerous learning algorithms to support high-performance computing, a fully automated performance benchmarking system.

  • PDF

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

A Web-based Decision Support System for the Research and Development of Construction Automation (건설자동화 연구개발을 위한 웹기반의사결정 지원시스템 구축에 관한 연구)

  • Won Young-Ho;Kim Hyun-Chul;Oh Se-Wook;Kim Young-Suk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.545-550
    • /
    • 2001
  • Domestic construction industry has faced with many problems in productivity, quality, safety and skilled-labor availability because of the national economic depression, insufficient supply of skilled labors and so on. There is a growing need for improving productivity and quality, and savings in cost. In the case of advanced countries, they have made a number of research efforts to solve these problems with construction automation and robotics. Recently, there are growing interests in construction automation and robotics but such interests have not been further increased due to the difficulties in gathering or accessing valuable information on the research and development of construction automation and robotics. The main purpose of this study is to provide a web-based research database and decision support system for an effective research and development of automated construction system and robots. It is expected that this system would be able to provide a framework for the successful research, development and implementation of the construction automation and robotics in domestic construction industry

  • PDF

A Distributed Task Assignment Method and its Performance

  • Kim, Kap-Hwan
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-51
    • /
    • 1996
  • We suggest a distributed framework for task assignment in the computer-controlled shop floor where each of the resource agents and part agents acts like an independent profit maker. The job allocation problem is formulated as a linear programming problem. The LP formulation is analyzed to provide a rationale for the distributed task assignment procedure. We suggest an auction based negotiation procedure including a price-based bid construction and a price revising mechanism. The performance of the suggested procedure is compared with those of an LP formulation and conventional dispatching procedures by simulation experiments.

  • PDF

Proposal of the Track Layout Criterion for the Light Rail Transit (경량전철 선로선형기준에 대한 제안)

  • 오지택;한승용;윤태양;성택룡
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.111-118
    • /
    • 2000
  • This paper proposes the track layout criterion for the LRT(light rail transit). All criterions established concerning dimension and performance of LRT vehicles that are three types. Types of vehices are AGT(automated guided train) steel wheel. AGT rubber tire and LIM(linear induction motor). Using theoritical approach, adaptation and validity of criterions are verified. Proposed criterions may provide a standard scheme for design and construction of the infrastructure on LRT.

  • PDF

Control of Automated Greenhouse Based on a PC (PC 기반 자동화 시설 하우스 제어)

  • 김기환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.644-649
    • /
    • 2004
  • To control a greenhouse is to control environmental parameters in greenhouse. Controlled environments may be as simple as saran-covered shade houses or as complex as growth chambers. Although greenhouses are probably the most common example of a controlled environment used in agricultural/horticultural production, the type of controlled environment or system that is needed depends upon the climate, time of year, crops being produced and the environmental parameters that must be controlled. In this contribution puts emphasis on construction of automatic-controlled greenhouse system by personal computer.

A Computerized Model Development for Plant Layout Planning and Economic Analysis (컴퓨터를 이용한 공장설계 및 경제성 분석 Model 개발연구)

  • 이상도;김정자;송서일;하정진;이상원;서순근;박구현;정중희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.6 no.8
    • /
    • pp.1-11
    • /
    • 1983
  • This study is consists of two parts. First, we analyzed two construction algorithms; CORELAP( Computerized Relationship Layout Planning) and ALDEP (Automated Layout Design Program). And we made a New Relationship Layout Planning overcoming the defaults of CORELAP and ALDEP. Second, we described the only improvement algorithm CRAFT(Computerized Relative Allocation of Facilities Technique). And we modified the CRAFT, which is considering the economic evaluation.

  • PDF