• 제목/요약/키워드: Automated Collection

검색결과 121건 처리시간 0.026초

생활폐기물 수거 방법의 비교 연구 (A Comparative Study of Waste Collection Technologies)

  • 정영훈;서상호;김형호
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.48-53
    • /
    • 2013
  • Due to the urbanization, lots of people are living in cities. It is very convenient to live in the cities for the people but at the same time, the highly populated city has several environmental problems. During delivery process of large amount of municipal waste generated from the cities, the automobile emission and traffic jam have been occurred. The waste collection in the cities has been mainly done by using labour force and delivery truck. This is the conventional waste collection up to now. Recently, new technologies like automated waste collection system and capsule transportation have been introduced. Conventional waste collection mainly relied on the labour force and truck delivery does not need to invest a lot of money for the start-up. However, it requires to pay the operational cost both for the labour force and the truck delivery. On the contrary to this conventional waste collection, the automated waste collection and capsule transportation require high initial investment cost. However, the automated waste collection and capsule transportation can reduce significantly the pollutants emission, traffic jam by the waste trucks and actual waste collection cost per ton. In dealing with the waste collection in the cities, new waste collection technologies could be properly combined with the conventional waste collection for the effective municipal waste treatment.

AUTOMATED PROGRESS MEASUREHEMT FOR CONTRUCTION PROJECT

  • Seunghee Kang;Youngsoo Jung
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1068-1074
    • /
    • 2009
  • The progress is widely used as a critical index for successful construction project management. In spite of the importance of progress measurement, the excessive management effort to collect and maintain detailed data has been highlighted as a major barrier to measurement of highly accurate progress. In order to reduce the required workload and to enhance accuracy, several researches have been conducted. These researches can be categorized into two groups. First group focuses on automated data collection utilizing advanced technologies only for limited construction tasks. The second group is a research area where the standard progress measurement methodologies encompassing entire construction tasks are investigated. Topics include the adjusting the level of details, standardizing work processes, and applying flexible WBS. However, the techniques for automated data collection are not fully investigated yet in the second group. Combining these two research areas can provide a solution for more effective progress management in terms of enhancing accuracy and optimizing workload. However, there has been no comprehensive research addressing these two research groups in an integrated manner. In this context, the purpose of this paper is to propose a methodology that identifies the most suitable measurement method and data acquisition technology (e.g., GPS, RFID, etc.) for entire construction tasks of a project. The proposed methodology in this paper will be able to facilitate the selection process of data acquisition technologies for entire construction tasks of a project and to support the overall enhancement of automated progress management.

  • PDF

생활폐기물 자동집하시설 이송관망 성능평가 (Performance Evaluation on the Pipelines for an Automated Vacuum Waste Collection System)

  • 장춘만;이상문
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.26-32
    • /
    • 2015
  • This paper describes performance evaluation of design parameters, air velocity inside a pipeline and pressure along a pipeline, using experimental measurements in an automated vacuum waste collection system. Automatic robot having six cameras is introduced to analyze the internal pipeline conditions whether waste accumulates at the bottom of the pipeline or not. Throughout the experimental measurements of the pipeline having the various shapes, it is found that pressure and internal air velocity linearly increase along the pipeline from a waste inlet to a waste collection station while air density decreases due to the air compression effect with high pressure. Although air velocity inside the pipeline at a waste inlet keeps design velocity range between 20 m/s and 30 m/s, it is noted that air velocity near the waste collection station exceeds maximum design velocity of 30 m/s. Pressure increase per unit length is changed from 17.6 Pa/m to 18.9 Pa/m, which depends on the air velocity inside the pipeline. From the investigation inside the pipeline with CCTV loaded on an automated robot, waste accumulated at the bottom of the pipeline is mainly found at the downstream of a circular curved pipe, an inclined pipe and a bended pipe.

위험도로사면의 실시간 무인감시시스템 개발 연구 (A Study on Development of Automated Monitoring System for Road Cut Slopes)

  • 김춘식;이광우;윤수호;조삼덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.607-614
    • /
    • 2000
  • A cost-effective automated slope monitoring system is developed to monitor hazardous cut slopes along highways. This automated slope monitoring system consists of data-collection and visual monitoring, data-transmitting, database and internet service, and alarm system. Wire-line extensometer, automatic raingauge, and CCD camera are selected as monitoring instruments in this system, after consideration of failure characteristics of roadside cut slopes in the country. This paper describes the important features of this newly developed automated slope monitoring system.

  • PDF

AUTOMATED DATA COLLECTION TECHNOLOGY APPLICATIONS IN CONSTRUCTION

  • Ronie Navon
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.27-29
    • /
    • 2009
  • Real-time control of on-site construction, based on high quality data, is essential to identify discrepancies between actual and planned performances. Additionally, real-time control enables timely corrective measures to be taken when needed to reduce the damages caused by the discrepancies. The focus of the presentation will be on our work, which uses automated data technologies to collect data needed for real time control.

  • PDF

A HAZARDOUS AREA IDENTIFICATION MODEL USING AUTOMATED DATA COLLECTION (ADC) BASED ON BUILDING INFORMATION MODELLING (BIM)

  • Hyunsoo Kim;Hyun-Soo Lee;Moonseo Park;Sungjoo Hwang
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.17-22
    • /
    • 2011
  • A considerable number of construction disasters occur on pathways. Safety management is usually performed on construction sites to prevent accidents in activity areas. This means that the safety management level of hazards on pathways is relatively minimized. Many researchers have noted that hazard identification is fundamental to safety management. Thus, algorithms for helping safety managers to identify hazardous areas are developed using automated data collection technology. These algorithms primarily search for potential hazardous areas by comparing workers' location logs based on a real-time location system and optimal routes based on BIM. Potential hazardous areas are filtered by identified hazardous areas and activity areas. After that, safety managers are provided with information about potential hazardous areas and can establish proper safety countermeasures. This can help to improve safety on construction sites.

  • PDF

생활폐기물 자동집하시설용 다단직렬연결 원심블로어 운전특성 (Operating Characteristics of Serially Connected Centrifugal Blowers Used for Automated Vacuum Waste Collection System)

  • 장춘만;이종성
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.40-46
    • /
    • 2014
  • This paper describes blower performance characteristics of a automated vacuum waste collection system. Blowers serially connected to six or seven centrifugal blowers are evaluated by experimental measurements to understand blower performances according to blower numbers operated. Two different blowers and duct diameters connected to the main blowers are considered. Data acquisition system is introduced to measure pressure and pressure difference at the main duct simultaneously, which is connected to several blowers serially. A auxiliary blower, which is installed between a filter room and an air deodorizing apparatus, is also added to simulate its performance effect on the main blower. Throughout the experimental measurements of the blower system, it is found that pressure and inlet velocity at the upstream of a blower increase 3.7 and 2.4 times separately by increasing the operating blower numbers from one to seven. It is noted that blower efficiency and pressure measured at the system vary according to the distance between a air intake and a blower system. Auxiliary blower is effective to increase blower inlet suction pressure, while total energy consumption is increased relatively.

BIM기반 자동화 데이터 수집기술을 활용한 위험지역 식별 모델 (Hazardous Area Identification Model using Automated Data Collection(ADC) based on BIM)

  • 김현수;이현수;박문서;이광표;편재호
    • 한국건설관리학회논문집
    • /
    • 제11권6호
    • /
    • pp.14-23
    • /
    • 2010
  • 건설 산업의 재해 중 상당 부분은 작업자의 이동 중 발생한다. 건설 현장의 안전관리는 작업을 중심으로 수행되며, 이는 이동 경로에 존재하는 위험원에 대한 안전관리 수준을 상대적으로 낮게 만든다. 많은 연구자들이 위험원을 인지하는 것이 안전관리의 기본임을 제시하였다. 따라서 본 연구에서는 자동화 데이터 수집기술(Automated Data Collection)을 이용하여 작업자의 이동경로에 존재하는 위험원에 대한 안전관리자의 인지를 지원하는 모델을 개발하였다. 모델은 실시간 위치추적기술 기반의 작업자의 위치정보와 BIM을 통한 최적이동 동선의 비교를 통해 일차적으로 위험 가능 지역을 찾는다. 그리고 기존 위험지역과 작업지역을 필터링함으로써 위험 가능 지역을 폭을 좁힌다. 이를 바탕으로 안전 관리자는 위험원이 존재할 가능성이 높은 지역에 대한 정보를 제공받고, 현장의 상황에 맞는 안전관리대책을 수립할 수 있을 것이다. 본 연구에서 제시된 모델을 통해 발견하지 못한 채 남을 수 있는 위험지역을 인지함으로써 안전관리 프로세스 범위에 속하지 않는 위험원을 줄일 수 있으며, 이를 통해 건설 현장의 안전 향상에 도움을 줄 것이라 예상된다.

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 2) Automation, Implementation, and Experimental Results

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • 한국측량학회지
    • /
    • 제32권3호
    • /
    • pp.205-216
    • /
    • 2014
  • Multi-camera systems have been widely used as cost-effective tools for the collection of geospatial data for various applications. In order to fully achieve the potential accuracy of these systems for object space reconstruction, careful system calibration should be carried out prior to data collection. Since the structural integrity of the involved cameras' components and system mounting parameters cannot be guaranteed over time, multi-camera system should be frequently calibrated to confirm the stability of the estimated parameters. Therefore, automated techniques are needed to facilitate and speed up the system calibration procedure. The automation of the multi-camera system calibration approach, which was proposed in the first part of this paper, is contingent on the automated detection, localization, and identification of the object space signalized targets in the images. In this paper, the automation of the proposed camera calibration procedure through automatic target extraction and labelling approaches will be presented. The introduced automated system calibration procedure is then implemented for a newly-developed multi-camera system while considering the optimum configuration for the data collection. Experimental results from the implemented system calibration procedure are finally presented to verify the feasibility the proposed automated procedure. Qualitative and quantitative evaluation of the estimated system calibration parameters from two-calibration sessions is also presented to confirm the stability of the cameras' interior orientation and system mounting parameters.