• Title/Summary/Keyword: Autogeneous shrinkage

Search Result 14, Processing Time 0.02 seconds

Comparison on Characteristics of Concrete Autogenous Shrinkage according to Strength Level, Development Rate and Curing Condition (콘크리트 강도, 발현 속도 및 양생조건에 따른 자기수축 특성 비교)

  • Yang, Eun-Ik;Shin, Jung-Ho;Choi, Yoon-Suk;Kim, Myung-Yu;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.741-747
    • /
    • 2011
  • In this study, autogenous shrinkage strain and prediction models of concrete specimens were compared with strength level and development rate. Also, concrete autogeneous shrinkage under various curing conditions was investigated. The results showed that autogeneous shrinkage increased as concrete strength increased. However, when the concrete strength was almost identical, the initial autogeneous shrinkage of OPC was larger than BFS, but the final autogeneous shrinkage of BFS was larger than OPC. Early wet curing reduced autogeneous shrinkage strain. Especially, when the early wet curing was applied for more than 24 hours, final autogeneous shrinkage was significantly reduced. The results showed that the existing EC2 models do not reflect concrete properties properly. Therefore, the revised model was proposed to better predict autogeneous shrinkage.

Characteristics of Drying and Autogeneous Shrinkage in HPC with 65% Replacement of GGBFS (고로슬래그 미분말을 65% 치환한 고성능 콘크리트의 자기 및 건조수축 특성)

  • Jang, Seung-Yup;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • GGBFS (Ground Granulated Blast Furnace Slag) is a byproduct with engineering advantages and HVSC (High Volume Slag Concrete) is widely attempted due to active utilization and reduction of eco-load. In the present work, characteristics of drying shrinkage and early-aged behavior are evaluated for the concrete with 65% replacement ratio of GGBFS and 50MPa of design strength. For the work, 3 different mix conditions are considered and several tests including slump flow, compressive strength, drying and autogeneous shrinkage are performed. From the test, OPC 100 mixture without replacement shows higher strength development before 7 days, however the strength reduction in concrete replaced with GGBFS is not significant due to sufficient free water for cement hydration. OPC 100 mixture also shows significant drying shrinkage due to a great autogeneous shrinkage before 3 days. In the concrete with GGBFS replacement, the drying shrinkage behavior is improved due to relatively small deformation by autogeneous shrinkage. The mixture (OPT BS 65) with lower w/b ratio (0.27) and unit content of water ($160kg/m^3$) shows more improved shrinkage behavior than BS 65 mixture which has simple replacement of GGBFS with 0.30 of w/b and $165kg/m^3$ of water unit content.

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures (알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

Effect of Expanding Admixture and Shrinkage Reducing Agent on the Shrinkage Reducing Properties of Ultra High Performance Cement Mortar (팽창재 및 수축저감제가 초고성능 시멘트 모르타르의 수축특성에 미치는 영향)

  • Han, Dong-Yeop;Yu, Myoung-Youl;Lee, Hyun-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.61-64
    • /
    • 2006
  • Comparing with traditional high performance concrete, ultra high performance concrete (UHPC) has the property of high-tenacity. However, drying shrinkage and autogenous shrinkage can be arisen as the major defect to UHPC. In this study, therefore, it was tested to reduce drying shrinkage and autogeneous shrinkage by adding expanding admixture (EA) and shrinkage reducing agent (SRA). As a result, for a case drying shrinkage, the shrinkage was decreased by 94% when EA was exchanged, and it was decreased by 64% when SRA was added. For the case of autogenous shrinkage, the mortar was expanded at early age and the shrinkage was decreased by 87% when EA was exchanged, and the shrinkage was decreased by 70% when SRA was added.

  • PDF

An Experimental Study on the Influence of Types of Mineral Admixtures and Cement on the Properties of Ultra-High Strength Concrete (초고강도 콘크리트의 특성에 미치는 시멘트 종류 및 혼화재 종류의 영향에 관한 실험적 연구)

  • Kim Duk-Hyun;Kang Hoon;Lee Sang-Soo;Song Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.261-264
    • /
    • 2004
  • In this study, the experiment was carried out to investigate and analyze the strenth properties and flowability of ultra-high strength concrete accroding to types of mineral admixtures and cements. The main experimental variables were water/binder ratio $25.0\%$, water content $160kg/m^3$ and mineral admixtures such as fly ash, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows 1) In case of using admixtures, superplasticizer amount need more than plain concrete. 2) According to kinds of admixtures and cements, the viscosity of concrete show much difference. 3) The autogeneous shrinkage of ultra-high strength concrete is profitable that use admixture, and heat of hydration is desirable that apply considering countermeasure enough in the advance. 4) Meta kaolin is excellent in side but has viscosity enlargement efficiency a little. But, problem estimates that is not to make design strength to and $70N/mm^2$ if use mixing condition with water-binder ratio properly.

  • PDF

Simulation of concrete shrinkage taking into account aggregate restraint

  • Tangtermsirikul, Somnuk;Nimityongskul, Pichai
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.105-113
    • /
    • 1997
  • This paper proposes a model for simulating concrete shrinkage taking into account aggregate restraint. In the model, concrete is regarded as a two-phase material based on shrinkage property. One is paste phase which undergoes shrinkage. Another is aggregate phase which is much more volumetrically stable. In the concrete, the aggregate phase is considered to restrain the paste shrinkage by particle interaction. Strain compatibility was derived under the assumption that there is no relative macroscopic displacement between both phases. Stresses on both phases were derived based on the shrinking stress of the paste phase and the resisting stress of the aggregate phase. Constitutive relation of paste phase was adopted from the study of Yomeyama, K. et al., and that of the aggregate phase was adopted from the author's particle contact density model. The equation for calculating concrete shrinkage considering aggregate restraint was derived from the equilibrium of the two phases. The concrete shrinkage was found to be affected by the free shrinkage of the paste phase, aggregate content and the stiffness of both phases. The model was then verified to be effective for simulating concrete shrinkage by comparing the predicted results with the autogeneous and drying shrinkage test results on mortar and concrete specimens.

Crack Control of Early-Age High Strength Concrete Deck in Composite Bridge (합성거더교 초기재령 고강도 콘크리트 바닥판의 균열 제어)

  • Bae, Sung-Geun;Kim, Se-Hun;Jeong, Sang-Kyoon;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.493-496
    • /
    • 2008
  • The risk of transverse cracking in concrete decks of composite bridges is affected by many factors related to the bridge design, materials, and construction. Among others, the thermal and shrinkage stresses are the most important factors that affect the transverse cracking in early-age concrete decks. The thermal stress at the concrete deck is mainly affected by both ambient temperature and solar radiation. The shrinkage stress at the general strength concrete deck is mainly affected by drying shrinkage and the high strength concrete deck is mainly affected by autogeneous shrinkage. Three-dimensional finite element models of composite bridges were made to investigate the stress due to thermal and shrinkage stress.

  • PDF

Autogenous Shrinkage and Fundamental Properties of the High Strength Mortar Containing Waste Vegetable Oil (폐식용유를 사용한 고강도 모르터의 자기수축 및 공학적 특성)

  • Han, Min-Cheol;Song, Ri-Fan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • The objective of this paper is to explore the possibility of reuse of waste vegetable oil (WO) as an autogenous shrinkage reducer for high strength concrete and to compare the amount of autogenous shrinkage of the mortar using existing shrinkage reducing agent(SR) and expansive additives(EA). According to test results, as the dosages of WO increased, flow value exhibited to decrease, while the use of SR increased flow value. For the effect of WO on strength, although the use of SR and WO resulted in a slight decrease in compressive strength at early age, at 91 days they had similar strength level of the plain mixture. For autogenous shrinkage, as expected, the addition of WO, SR and EA resulted in a decrease of autogeneous shrinkage considerably especially, WO had superiority in autogenous shrinkage reducing effect compared with the case of SR and EA.

  • PDF