• 제목/요약/키워드: Autocorrelogram

검색결과 15건 처리시간 0.026초

Content-Based Image Retrieval Using Multi-Resolution Multi-Direction Filtering-Based CLBP Texture Features and Color Autocorrelogram Features

  • Bu, Hee-Hyung;Kim, Nam-Chul;Yun, Byoung-Ju;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.991-1000
    • /
    • 2020
  • We propose a content-based image retrieval system that uses a combination of completed local binary pattern (CLBP) and color autocorrelogram. CLBP features are extracted on a multi-resolution multi-direction filtered domain of value component. Color autocorrelogram features are extracted in two dimensions of hue and saturation components. Experiment results revealed that the proposed method yields a lot of improvement when compared with the methods that use partial features employed in the proposed method. It is also superior to the conventional CLBP, the color autocorrelogram using R, G, and B components, and the multichannel decoded local binary pattern which is one of the latest methods.

영상분할과 다중 특징을 이용한 영역기반 영상검색 알고리즘 (Region-based Image Retrieval Algorithm Using Image Segmentation and Multi-Feature)

  • 노진수;이강현
    • 전자공학회논문지CI
    • /
    • 제46권3호
    • /
    • pp.57-63
    • /
    • 2009
  • 컴퓨터 기반의 영상 데이터베이스의 급격한 증가에 따라 영상 정보를 관리할 수 있는 시스템의 필요성이 증가하고 있다. 본 논문에서는 영상분할 알고리즘에 Active Contour, 칼라 특징으로 칼라 오토코렐로그램(Color Autocorrelogram), 질감 특징으로 CWT(Complex Wavelet Transform), 그리고 형태 특징으로 Hu 불변모멘트를 선택하여 이들을 효율적으로 추출하고 결합한 영역기반 다중 특징 영상검색 알고리즘을 제안한다. 칼라 오토코렐로 그램은 영상의 H(Hue), S(Saturation) 성분으로부터 추출 하였고, 질감 특징과 형태 및 위치 특징은 V(Value) 성분으로부터 추출하였다. 효율적인 유사도 측정을 위해 추출된 특징(오토코렐로그램, Hu 불변 모멘트, CWT 모멘트)을 결합하여 정확도와 재현율을 측정하였다. Corel DB 및 VisTex DB에 대한 실험 결과, 제안된 영상검색 알고리즘은 94.8%의 정확도와 90.7%의 재현율을 가지며 성공적으로 영상검색 시스템에 응용할 수 있다.

칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색 (Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics)

  • 성중기;천영덕;김남철
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.103-114
    • /
    • 2005
  • 본 논문에서는 칼라 특징으로 칼라 오토코렐로그램(autocorrelogram)을 선택하고 질감 특징으로 BDIP(block difference inverse probabilities)와 BVLC(block variance of local correlation coefficient)를 선택하여 이들을 효율적으로 추출하고 결합한 다중 특징기반 영상검색 기법을 제안한다. 칼라 오토코렐로그램은 영상의 H(hue), S(saturation) 칼라 성분으로부터 추출 하였고, BDIP와 BVLC는 V(value) 성분으로부터 추출하였다. 이때 각 특징추출 시 계산량을 고려하여 간소화된 오토코렐로그램과 BVLC를 제안하여 사용하였으며, 추출한 특징들을 효율적으로 저장하기 위해 특징벡터성분들의 값을 그 분포에 따라 균등 또는 비균등 양자화 하여 사용하였다. Corel DB및 VisTex DB에 대한 실험 결과, 칼라 오토코렐로그램과 BDIP, BVLC 질감 특징을 결합함으로써 동일한 차원에서 오토코렐로그램만을 사용할 때보다 최대 9.5%, BDIP, BVLC만을 사용할 때보다 최대 4% 검색성능이 향상되었다. 또한 제안한 다중 특징은 웨이브렛 모멘트, CSD, 칼라 히스토그램에 비해 특징벡터의 저장공간을 약 3분의 1 정도 적게 차지하면서 검색성능이 각각 최대 12.6%, 14.6%, 27.9% 우수하게 나타남을 확인할 수 있었다.

히스토그램 인터섹션과 오토코릴로그램을 이용한 내용기반 영상검색 시스템 (Content Based Image Retrieval System using Histogram Intersection and Autocorrelogram)

  • 송석진;김효성;이희봉;남기곤
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2002
  • 본 논문에서는 사용자가 질의영상을 선택할 때 영상전체 뿐만 아니라 영상내의 다양한 물체에 대해 질의를 원하는 물체영역만을 간단히 선택, 추출하여 그와 유사한 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상으로부터 개선된 HSV변환을 통해 히스토그램을 구한 뒤 질의영상의 대표색상을 이용한 컬러 히스토그램 인터섹션방법으로 신속하게 1차 유사도 측정을 하여 후보영상들을 검색한다. 그리고 밴디드 컬러 오토코릴로그램을 이용한 2차 유사도 측정을 수행하여 최종 검색된 영상을 구하였는데 각각의 단점을 보완할 수 있는 2개의 검색방법들을 결합함으로써 소환성(recall) 및 정확성(precision)을 개선하였다. 또한 영상데이터베이스내의 영상들을 특성 라이브러리내에 자통 색인화하여 이를 통해 빠른 영상검색이 가능하였다.

  • PDF

웨블릿 변환기법을 이용한 내용기반 컬러영상 검색시스템 구현 (Implementation of Content Based Color Image Retrieval System using Wavelet Transformation Method)

  • 송석진;이희봉;김효성;남기곤
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.20-27
    • /
    • 2003
  • 본 논문에서는 사용자가 질의를 원하는 물체 영역을 선택하면 유사 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상은 색상성분과 그레이성분으로 나누어져 웨블릿 변환되고 색상성분에서는 컬러 오토코릴로그램과 분산으로 색상특성을 추출한다. 그리고 그레이성분에서는 오토코릴로그램과 GLCM을 통해 질감특성을 추출한다. 이렇게 구한 2개 성분에서의 특성들을 이용하여 데이터베이스내의 영상들과 각각 유사도를 비교하여 검색하게 된다. 이때 각 유사도에 가중치를 적용하였다. 한 가지 성분보다 두 가지 성분에서 특성을 구하여 각각의 단점을 보완하였고 실험 결과에서도 소환성(recall) 및 정확성(precision)이 향상됨을 볼 수 있었다 또한 가중치를 적용함으로써 검색 효율이 개선되었다. 그리고 데이터베이스내 영상들의 여러 특성을 특성 라이브러리내에 자동 색인화 시킴으로써 고속의 영상 검색이 가능하였다.

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

칼라 및 다해상도 질감 특징 결합에 의한 영상검색 (Image Retrieval Using Combination of Color and Multiresolution Texture Features)

  • 천영덕;성중기;김남철
    • 한국통신학회논문지
    • /
    • 제30권9C호
    • /
    • pp.930-938
    • /
    • 2005
  • 본 논문에서는 칼라 특징과 다해상도 질감 특징의 효율적인 결합에 근거한 내용기반 영상검색 기법을 제안한다. 칼라 특징으로는 칼라의 공간적인 상관관계를 잘 나타내는 HSV 칼라 오토코렐로그램(color autocorrelogram)을 선택하였고, 질감 특징으로는 국부 밝기 변화와 국부 질감의 부드러움 정도를 잘 측정하는 BDIP와 BVLC를 선택하였다. 이 질감 특징들은 칼라 영상의 휘도(luminance) 성분에서 웨이브렛(wavelet) 분해되어 다해상도로 추출되었다. 그리고 이들 칼라와 질감 특징들은 효율적인 유사도 측정을 위해 각각 이들의 차원들과 표준편차 벡터들에 의해 정규화된 후 결합되었다. 실험을 위한 영상으로는 Corel DB와 VisTex DB, 그리고 이들로부터 파생되어 다양한 해상도의 영상으로 구성된 Corel_MR DB와 VisTex_MR DB를 사용하였다. 실 험 결과, 제안한 방법은 Precision vs. Recall 평가에서 기존의 BDIPBVLC 방법과 칼라 오토코렐로그램 방법보다 각각 평균 $8\%$와 평균 $11\%$ 향상된 성능을 나타내었으며 웨이브렛. 모멘트, CSD, 히스토그램을 이용한 방법들보다 $10\%$ 이상의 높은 성능을 나타내었다. 특히, 제안한 방법이 다른 방법들 보다 다해상도로 구성된 영상 DB에서 높은 검색 성능 차이를나타내었다.

물체 분할 기법을 이용한 내용기반 영상 검색 (A Content-Based Image Retrieval using Object Segmentation Method)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 현재 사회전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 논문에서는 정지영상 검색을 위해 사용자가 질의(query)를 요구하면 질의 물체를 배경으로부터 분할한 후 유사물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상이 들어오면 우선 메디안 필터링 처리를 하여 잡음 제거한 후 캐니 에지 탐지법으로 물체의 에지를 구한다. 그리고 볼록 다각형 기법을 이용하여 배경으로부터 질의물체를 분할한다. 분할된 영상으로부터 컬러 히스토그램을 구한 후 데이터 베이스내의 영상과 히스토그램 인터섹션을 하여 유사치를 구한다 또한 공간적 그레이 분포와 질감특성을 추출하기 위해 분할된 영상을 그레이 영상으로도 변환시켜 웨블릿 변환한 후 밴디드 오토코릴로그램과 에너지를 구해 유사치를 구한다. 이렇게 구한 유사치을 더해 최종 유사영상을 검색하는데 물체 분할기법을 사용함으로써 배경에 강인할 뿐 아니라 보다 정확한 물체 검색이 가능하였다.

  • PDF

Transfer Function 모형을 이용한 수도물 수요의 단기예측 (A Short-term Forecasting of Water Supply Demands by the Transfer Function Model)

  • 이재준
    • 상하수도학회지
    • /
    • 제10권2호
    • /
    • pp.88-103
    • /
    • 1996
  • The objective of this study is to develop stochastic and deterministic models which could be used to synthesize water application time series. Adaptive models using mulitivariate ARIMA(Transfer Function Model) are developed for daily urban water use forecasting. The model considers several variables on which water demands is dependent. The dynamic response of water demands to several factors(e.g. weekday, average temperature, minimum temperature, maximum temperature, humidity, cloudiness, rainfall) are characterized in the model by transfer functions. Daily water use data of Kumi city in 1992 are employed for model parameter estimation. Meteorological data of Seonsan station are utilized to input variables because Kumi has no records about the meteorological factor data.To determine the main factors influencing water use, autocorrelogram and cross correlogram analysis are performed. Through the identification, parameter estimation, and diagnostic checking of tentative model, final transfer function models by each month are established. The simulation output by transfer function models are compared to a historical data and shows the good agreement.

  • PDF

웨이브릿 변환 영역의 칼라 및 질감 특징을 이용한 영상검색 (Image Retrieval Using Multiresoluton Color and Texture Features in Wavelet Transform Domain)

  • 천영덕;성중기;김남철
    • 대한전자공학회논문지SP
    • /
    • 제43권1호
    • /
    • pp.55-66
    • /
    • 2006
  • 본 논문에서는 웨이브릿 변환된 영역에서 추출된 다해상도 칼라 및 질감 특징의 효율적인 결합을 이용한 점진적 영상검색 기법을 제안한다. 칼라 특징으로 칼라 영상의 H(Hue)와 S(Saturation) 성분의 칼라 오토코렐로그램을 선택하였고, 질감 특징으로는 V(value) 성분의 BDIP와 BVLC 모멘트를 선택하였다 선택된 특징들에 대하여 웨이브릿 변환 영역의 각 분해 레벨로부터 다해상도 특징벡터들을 얻었다. 칼라와 질감 특징의 다해상도 특징벡터들은 특징들의 차원들과 표준 편차 벡터들에 의해 정규화되어 효율적으로 결합되었고, 저장 공간을 고려하여 각 대상 영상들의 특징벡터들은 효율적으로 양자화 되었으며 점진적 검색 기법을 적용하여 유사도 계산시 계산량을 줄였다. 제안한 방법은 칼라 히스토그램, 칼라 오토코렐로그램, SCD, CSD, 웨이브릿 모멘트, EHD, BDIPBVLC, 칼라 히스토그램과 웨이브릿 모멘트의 결합을 이용한 방법들보다 정확도 대 재현율 평가에서는 평균 $15\%,$ ANMRR 평가에서는 평균 0.2 향상된 성능을 나타내었다. 특히, 제안한 방법은 다양한 해상도를 가지는 영상 DB에서 더욱 우수한 성능을 나타내었다