• Title/Summary/Keyword: Autoclave Furnace

Search Result 17, Processing Time 0.023 seconds

Properties of Extruding Cement Panel Using Ca-extracted Slag as Silicious Source (Ca 추출 슬래그를 실리카 원료로 사용한 압출성형시멘트 패널의 특성)

  • Choi, Hong-Beom;Kim, Jin-Man;Yu, Jae-Seong;Hyun, Ji-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.117-118
    • /
    • 2016
  • This paper evalutes properties of extruding cement panel using Ca-extracted convert slag and air-cooled blast furnace slag. Flexural strength of extruding cement panel has measured in air dry and autoclave curing as basic study for use as silicious source. As a result, when Ca-extracted converter slag replaces 25% in autoclave curing, flexural strength measures 13.1MPa better than panel control mix. In result of using air-cooled blast furnace slag, Ca-extracted air-cooled blast furnace slag dose not show increase of flexural strength.

  • PDF

A Study on the Rust-protection Performance of Concrete using Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 사용한 콘크리트의 방청성능에 관한 연구)

  • Park, Sang-Joon;Kim, Dong-Seok;Won, Cheol;Lee, Sang-Soo;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • In this paper, rust-protection performance of concrete using ground granulated blast-furnace slag are discussed. 4 kinds of W/B in combination with 3 kinds of replacement ratio of ground granulated blast-furnace slag and 2 kinds of chloride ion contents of are selected as experimental parameters. According to the experimental results, as the replacement ratio of ground granulated blast-furnace slag is increased, the corrosion area of steel bar tends to be decreased. However, as the autoclave cycle and chloride ion contents are increased, the corrosion area of steel bar is increased. In conclusion, when the replacement ratio of ground granulated blast-furnace slag is 50%, the strength and rust-protection performance appear to be most excellent.

  • PDF

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

Analytical model of expansion for electric arc furnace oxidizing slag-containing concrete

  • Shu, Chun-Ya;Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.937-950
    • /
    • 2016
  • This study applied autoclave expansion and heat curing to accelerate the hydration of concrete and investigated how these methods affect the expansion rate, crack pattern, aggregate size effect, and expansion of electric arc furnace oxidizing slag (EOS)-containing concrete. An expansion prediction model was simulated to estimate the expansion behavior over a long period and to establish usage guidelines for EOS aggregates. The results showed that the EOS content in concrete should range between 20% and 30% depending on the construction conditions, and that coarse aggregates with a diameter of ${\geq}4.75-mm$ are not applicable to construction engineering. By comparison, aggregates with a size of 1.18-0.03 mm resulted in higher expansion rates; these aggregates can be used depending on the construction conditions. On Day 21, the prediction model attained a coefficient of determination ($R^2$) of at least 0.9.

A Study on the Optimal Concrete Mix-proportion Selection of PHC-pile by Using of Air-cooled Blast Furnace Slag Coarse Aggregate (괴재 고로슬래그 굵은 골재 사용에 따른 PHC-Pile용 콘크리트 최적 배합 도출에 관한 연구)

  • Jeon, In Ki;Lee, Joo Hun;Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.270-271
    • /
    • 2014
  • In this study, a replacement ratio of blast furnace slag coarse aggregate and a water binder ratio by an optimum combination of PHC file was investigated. As a results, the target strength 78.5MPa was altogether satisfied in a mix proportion 28-G100-SG0 and W/B ratio 26 %. The surface rupture was generated in 28-G0-SG100 combination after curing with the autoclave. According to the result of measuring the ingredient, the majority were the MgOH2 hydrate.

  • PDF

Quick Judgments of Properties of Fine Aggregate to Use the Electric Arc Furnace Oxidizing Slag

  • Lee, Hyung-Min;Lee, Han-Seung;Choi, Jae-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.442-451
    • /
    • 2011
  • Blast furnace slag is recycled as a high value-added material, while steel slag is difficult to recycle or is recycled as a low-grade filler material due to its expansive characteristics. Its property is caused by the high content of free lime and instable steel oxides. Recently, an innovative and rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to a minimum level and increases the stability of steel oxides. However, researches on the long-term stability are not sufficient so far. Therefore, this study, focusing on the electric arc furnace oxidizing slag in the steel slag, aims to investigate the properties of the steel slag aggregate, its long-term volume stability and the engineering strength of mortar, and using it as a fine aggregate. This study result indicated that it was possible for it to be used as concrete aggregate because the volume change of the steel slag appeared to be stable.

Effect of Annealing Temperature on the Nodular Corrosion of Zircaloy-4 Alloy (Zircaloy-4 합금의 Nodule형 부식에 미치는 열처리 온도의 영향)

  • 정용환;최종술;임갑순
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.31-41
    • /
    • 1991
  • The nodular corrosion behavior of Zircaloy-4 alloy was investigated by autoclave test at 50$0^{\circ}C$ under 1500 psi for the specimens quenched into water from $700^{\circ}C$, 80$0^{\circ}C$, 90$0^{\circ}C$, and 105$0^{\circ}C$. It was observed that the corrosion resistance of Zircalloy-4 specimen increased with increase in annealing temperature, and annealing at $\alpha$-region temperatures resulted in nodular corrosion while annealing at the temperature range of $\alpha$+$\beta$ and $\beta$ did not show nodular corrosion. It was also found that the size of nodule formed on the surface of the specimens increased with increase in exposure time in autoclave, but the total number of nodule remained uncha-nged. The corrosion of furnace-cooled specimens progressed mostly in the interior of grains where Fe and Cr alloying elements were largely depleted during the cooling process. However, the grain boundary seemed to act as a barrier to the nodular corrosion. From combining the present results with other works, it is suggested that the nodules nuc-leate in the local region where some of alloying elements are depleted.

  • PDF

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

A Study on the Estimation of Corrosion Protection Performance of Concrete Containing Ground Granulated Blast-Furnace Slag for Massive Coastal Structures (매시브한 해양구조물 적용을 위한 고로슬래그 혼입 콘크리트의 방청성능 평가에 관한 연구)

  • Yoo, Jae-Kang;Kim, Dong-Suk;Park, Sang-Joon;Won, Chul;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.87-91
    • /
    • 2002
  • This paper investigates the corrosion inhibition and the reduction of hydration heat properties of Ground Granulated Blast-Furnace Slag (GGBFS) added concrete. Since the massive civil structure is vulnerable to the thermal crack by hydration. adiabatic temperature rising tests were performed for water-binder ratios from 43.2% to 47.3%, while replacing 15% to 50% of cement with GGBFS of equal weight. Then, the corrosion protection performance was evaluated using cylindrical specimens embedded with steel reinforcement according to the combination of 3 W/B ratios and 2 levels of chloride ion quantity. The corrosion area of the embedded steel ban was determined using the high pressure steam curing method specified in KS F 2561. The test results showed that the replacement of GGBFS was effective in reducing the hydration heat. The corrosion area of the embedded steel ban decreased as the replacement of GGBFS increased. However, the corrosion area of the steel bar was proportional to the autoclave cycle and the chloride ion quantity. Among the tested specimens, compressive strength, reduction of hydration heat, and corrosion inhibition performance were excellent when 50% of cement was replaced with GGBFS of equal weight.

  • PDF