Journal of the Korean Institute of Intelligent Systems
/
v.20
no.3
/
pp.348-355
/
2010
In spite of development in speech recognition technology, speech recognition under noisy environment is still a difficult task. To solve this problem, Researchers has been proposed different methods where they have been used visual information except audio information for visual speech recognition. However, visual information also has visual noises as well as the noises of audio information, and this visual noises cause degradation in visual speech recognition. Therefore, it is one the field of interest how to extract visual features parameter for enhancing visual speech recognition performance. In this paper, we propose a method for visual feature parameter extraction based on image-base approach for enhancing recognition performance of the HMM based visual speech recognizer. For experiments, we have constructed Audio-visual database which is consisted with 105 speackers and each speaker has uttered 62 words. We have applied histogram matching, lip folding, RASTA filtering, Liner Mask, DCT and PCA. The experimental results show that the recognition performance of our proposed method enhanced at about 21% than the baseline method.
음성을 비롯하여 음악, 음향 등을 포함하는 오디오 신호는 멀티미디어 콘텐츠를 구성하는 매우 중요한 미디어 타입이며, 미디어 기록 매체와 네트워크의 발전으로 인한 데이터 양의 급격한 증대는 수동적 관리의 어려움을 유발하게 되고, 이로 인해 오디오 신호를 자동으로 구분하는 기술은 매우 중요한 기술로 인식되고 있다. 다양한 오디오 신호를 분류하기 위한 오디오 신호의 특징을 추출하는 기술은 많은 연구들을 통해 발전하여 왔으며, 본 논문은 오디오 콘텐츠 자동 분류에서 높은 성능을 갖는 오디오 신호 특징 추출에 대해서 분석한다. 그리고 특징 분류기 중에서 안정적인 성능을 가지는 SVM을 사용한 오디오 신호 분류 방법을 알아본다.
This paper is aiming at implementation of real-time speaker verification system using DSP board. Dialog/4, which is based on microprocessor and DSP processor, is selected to easily control telephone signals and to process audio/voice signals. Speaker verification system performs signal processing and feature extraction after receiving voice and its ID. Then through computing the likelihood ratio of claimed speaker model to the background model, it makes real-time decision on acceptance or rejection. For the verification experiments, total 15 speaker models and 6 background models are adopted. The experimental results show that verification accuracy rates are 99.5% for using telephone speech-based speaker models.
Sentiment analysis incorporates natural language processing and artificial intelligence and has evolved as an important research area. Sentiment analysis on product reviews has been used in widespread applications to improve customer retention and business processes. In this paper, we propose a method for performing an intensified sentiment analysis on customer product reviews. The method involves the extraction of two feature sets from each of the given customer product reviews, a set of acoustic features (representing emotions) and a set of lexical features (representing sentiments). These sets are then combined and used in a supervised classifier to predict the sentiments of customers. We use an audio speech dataset prepared from Amazon product reviews and downloaded from the YouTube portal for the purposes of our experimental evaluations.
In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.
Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.11
/
pp.1035-1045
/
2017
Classification of age and gender has been carried out through different approaches such as facial-based and audio-based classifications. One of the limitations of facial-based methods is the reduced recognition rate over large distances, while another is the prerequisite of the faces to be located in front of the camera. Similarly, in audio-based methods, the recognition rate is reduced in a noisy environment. In contrast, gait-based methods are only required that a target person is in the camera. In previous works, the view point of a camera is only available as a side view and gait data sets consist of a standard gait, which is different from an ordinary gait in a real environment. We propose a feature extraction method using skeleton models from an RGB-D sensor by considering characteristics of age and gender using ordinary gait. Experimental results show that the proposed method could efficiently classify age and gender within a target group of individuals in real-life environments.
Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.
Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.2
/
pp.185-192
/
2013
In this paper, proposed to improve the performance of speech and mixed content signal classification using MFCC based on GMM probability model used for the MPEG USAC(Unified Speech and Audio Coding) standard. For effective pattern recognition, the Gaussian mixture model (GMM) probability model is used. For the optimal GMM parameter extraction, we use the expectation maximization (EM) algorithm. The proposed classification algorithm is divided into two significant parts. The first one extracts the optimal parameters for the GMM. The second distinguishes between speech and mixed content signals using MFCC feature parameters. The performance of the proposed classification algorithm shows better results compared to the conventionally implemented USAC scheme.
Sparse coding or independent component analysis (ICA) which is a holistic representation, was successfully applied to elucidate early auditor${\gamma}$ processing and to the task of sound classification. In contrast, parts-based representation is an alternative way o) understanding object recognition in brain. In this thesis we employ the non-negative matrix factorization (NMF) which learns parts-based representation in the task of sound classification. Methods of feature extraction from the spectro-temporal sounds using the NMF in the absence or presence of noise, are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.