• 제목/요약/키워드: AuNPs

Search Result 95, Processing Time 0.027 seconds

Synthesis of Silica-Core Gold-Satellite Nanoparticles and Their Surface-enhanced Raman Scattering Based Sensing Application (실리카 코어 금 위성입자의 합성 및 표면 증강 라만 산란을 기반으로 한 센서로의 응용)

  • Choi, Hyun Ji;Kim, Young-Kuk;Yoon, Seok-Young;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • In this study, we synthesize silica-core gold-satellite nanoparticles (SGNPs) for the surface-enhanced Raman scattering (SERS) based sensing applications. They consist of gold satellite nanoparticles (AuNPs) fixed on the silica core nanoparticles, which sizes of AuNPs can be tunned by varying the amount of reactants (growth solution and reducing agent). Their surface plasmon resonance (SPR) properties were characterized by using UV-vis spectroscopy, showing that the growth of AuNPs on silica cores leads to the light absorption in the longer wavelength region. Furthermore, the size increase of AuNPs exhibited the dramatic change in SERS activity due to the formation of hot spots. The optimized SGNPs showing enhancement factor ${\sim}3.8{\times}10^6$ exhibited a detection limit of rhodamine 6G (R6G) as low as $10^{-8}M$. These findings suggest the importance of size control of SGNPs and their SPR properties to develop highly efficient SERS sensors.

A Facile Method for Micropatterning of Gold Nanoparticles Immobilized on UV Cross-linked Polymer Thin Films

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.85-88
    • /
    • 2009
  • This report demonstrates the immobilization of uniformly sized gold nanoparticles (AuNPs) on UV cross-linked poly(4-vinylpyridine) (P4VP) polymer thin films and the preparation of micropatterned structures of AuNPs on these films. The polymer thin films were prepared by a spin-coating of P4VP onto a cleaned silicon wafer surface. Upon UV irradiation, these films were then photo cross-linked. Gold nanoparticles were immobilized by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. The morphology of the films and the immobilization of AuNPs were studied by atomic force microscopy (AFM) and UV-visible spectroscopic techniques. The micropatterned gold structures that were produced on the polymer surface are delineated by combining with the photolithographic method. While untreated and simply spin coated films were physisorbed and unstable that could be easily removed by rinsing with a solvent, the cross-linked and AuNPs immobilized P4VP films were found to be highly stable even after repeated solvent extractions.

Application of AuNPs immobilized on UV Cross-linked P4VP Thin Film as pH Nanosensors (pH 나노센서로의 응용을 위한 UV-가교 P4VP 박막에 고정한 금 나노입자의 특성)

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1010-1018
    • /
    • 2008
  • In this report, we describe the use of gold nanoparticles (AuNPs) immobilized on pH. responsive, cross-linked poly(4-vinylpyridine) (P4VP) thin films, as a potential application for pH nanosensors. The methodology is based on the variation in surface plasmon resonance of immobilized AuNPs with changing the interparticle distances, caused by the swelling/deswelling of the pH responsive P4VP polymer films. The change in optical properties of the immobilized AuNPs in response to the pH of surrounding media was investigated by a simple yet powerful tool; UV-vis absorption spectroscopy. The swelling of the P4VP chains at pH 2 causes an increase in the interparticle distances of immobilized AUNPS ($\sim20nm$) and hence leads to a blue shift of 48 nm in their surface plasmon resonance band peak. On the other hand, when the surrounding media was altered from pH 2 to 10, a red shift of absorption maxima was observed. The changes were rapid, and the effect was reversible. This system could prove to be useful in fabricating nanosensors for detecting the pH or pH changes of surrounding aqueous medium.

Synthesis of Au Nanoparticles Functionalized 1D α-MoO3 Nanobelts and Their Gas Sensing Properties

  • Wang, Liwei;Wang, Shaopeng;Fu, Hao;Wang, Yinghui;Yu, Kefu
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850115.1-1850115.10
    • /
    • 2018
  • A novel sensor material of Au nanoparticles (NPs) functionalized 1D ${\alpha}-MoO_3$ nanobelts (NBs) was fabricated by a facile lysine-assisted approach. The obtained $Au/{\alpha}-MoO_3$ product was characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX), and X-ray photoelectron spectra (XPS). Then, in order to investigate the gas sensing performances of our samples, a comparative gas sensing study was carried out on both the ${\alpha}-MoO_3$ NBs before and after Au NPs decoration by using ethanol vapor as the molecular probe. The results turned out that, after the functionalization of Au NPs, the sensor exhibited improved gas-sensing characteristics than the pure ${\alpha}-MoO_3$, such as response and recovery time, optimal operating temperature (OT) and excellent selectivity. Take for example 200 ppm of ethanol, the response/recovery times were 34 s/43 s and 5.7 s/10.5 s, respectively, while the optimal operating temperature (OT) was lower to $200^{\circ}C$ rather than $250^{\circ}C$. Besides, the functionalized sensor showed a higher response to ethanol at $200^{\circ}C$, and response was 1.6 times higher than the pure $MoO_3$. The mechanism of such improved sensing properties was interpreted, which might be attributed to the spillover effect of Au NPs and the electronic metal-support interaction.

Antiangiogenic Effects of Gold Nanoparticles VEGF-induced Vascular Endothelial Cells (금 나노입자의 VEGF에 의해 유발된 혈관 내피세포의 신생혈관형성 억제 효과)

  • Choi, Seung-Hyun;Ryu, Geun-Chang;Kim, In-Suk;Chae, Soo-Chul
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Angiogenesis is an important event involved in cell growth and wound healing process. However, the imbalance of growth factors causes diseases, such as ocular, inflammatory diseases. One of treatment of these diseases is to suppress the formation of blood vessels. Function and mechanism of gold nanoparticles (AuNPs) in the formation of blood vessels is not yet proved. Pigment epithelium derived factor (PEDF) is currently being offered anti-angiogenic materials. In this study, we postulated that AuNPs might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasion and metastasis. We have demonstrated that AuNPs could inhibit vascular endothelial growth factor (VEGF) induced cell proliferation, angiogenesis in bovine retinal endothelial cells.

Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications (표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용)

  • Kim, Dong Seok;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.97-102
    • /
    • 2018
  • In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of $16.7{\pm}2.1nm$. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of $10{\mu}g/mL$. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).

Ultrasmall Polyethyleneimine-Gold Nanoparticles with High Stability (높은 안정성을 갖는 초미립 폴리에틸렌이민-금 나노입자)

  • Kim, Eun-Jung;Yeum, Jeong-Hyun;Ghim, Han-Do;Lee, Se-Guen;Lee, Ga-Hyun;Lee, Hyun-Ju;Han, Sang-Ik;Choi, Jin-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.161-165
    • /
    • 2011
  • This study is related to the preparation of biocompatible gold nanoparticles (AuNPs) which are stable in aqueous solutions for a long time. Ultrasmall polyethyleneimine (PEI)-capped AuNPs (PEI-AuNPs) with limited agglomeration were prepared in aqueous solutions at room temperature, which were based on the roles of PEI as a reductant and a stabilizer. PEI-AuNPs with an average size of 8~12 nm formed highly stable nanocolloids with an average hydrodynamic cluster size of around 50 nm in aqueous media. At a low concentration of metal precursor hydrogen tetrachloroaurate (III), the particle size was reduced noticeably. The typical peaks of gold were observed in the X-ray diffraction pattern of AuNPs. The cell viability of 98% was obtained in the case of PEI-AuNPs, while PEI was cytotoxic. The PEI-AuNP is considered to be a potential candidate as a contrast agent for computed tomography.

Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells

  • Jimenez-Perez, Zuly Elizabeth;Singh, Priyanka;Kim, Yeon-Ju;Mathiyalagan, Ramya;Kim, Dong-Hyun;Lee, Myoung Hee;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.327-333
    • /
    • 2018
  • Background: Bioactive compounds in plant extracts are able to reduce metal ions to nanoparticles through the process of green synthesis. Panax ginseng is an oriental medicinal herb and an adaptogen which has been historically used to cure various diseases. In addition, the P. ginseng leaves-mediated gold nanoparticles are the value-added novel materials. Its potential as a cosmetic ingredient is still unexplored. The aim of this study was to evaluate the antioxidant, moisture retention and whitening properties of gold nanoparticles (PgAuNPs) in cosmetic applications. Methods: Cell-free experiments were performed to evaluate PgAuNP's antioxidant and moisture retention properties and inhibition activity on mushroom tyrosinase. Furthermore, in vitro cell cytotoxicity was evaluated using normal human dermal fibroblast and murine B16BL6 melanoma cells (B16) after treatment with increasing concentrations of PgAuNPs for 24 h, 48 h, and 72 h. Finally, in vitro cell assays on B16 cells were performed to evaluate the whitening effect of PgAuNPs through reduction of cellular melanin content and tyrosinase activity. Results: In vitro DPPH radical scavenging assay results revealed that PgAuNPs exhibited antioxidant activity in a dose-dependent manner. PgAuNPs exhibited moisture retention capacity and effectively inhibited mushroom tyrosinase. In addition, 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyl tetrazolium bromide results revealed that PgAuNPs were not toxic to human dermal fibroblast and B16 cells; in addition, they significantly reduced melanin content, tyrosinase activity, and mRNA expression of melanogenesis-associated transcription factor and tyrosinase in B16 cells. Conclusion: Our study is the first report to provide evidence supporting that P. ginseng leaves-capped gold nanoparticles could be used as multifunctional ingredients in cosmetics.

Double-Enhancement Strategy: A Practical Approach to a Femto-Molar Level Detection of Prostate Specific $Antigen-{\alpha}_1-Antichymotrypsin$ (PSA/ACT Complex) for SPR Immunosensing

  • Cao, Cuong;Sim, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1031-1035
    • /
    • 2007
  • Prostate specific $antigen-{\alpha}_1-antichymotrypsin$ was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSPJACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers

  • Kim, Jae-Hun;Zheng, Yifang;Mirzaei, Ali;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.741-750
    • /
    • 2016
  • Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated $SnO_2$ NFs was fabricated by electrospinning. $SnO_2$ NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated $SnO_2$ NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and $SnO_2$ in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure $SnO_2$ NFs, suggesting that Au-decorated $SnO_2$ NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.