Ultrasmall Polyethyleneimine-Gold Nanoparticles with High Stability

높은 안정성을 갖는 초미립 폴리에틸렌이민-금 나노입자

  • Kim, Eun-Jung (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University) ;
  • Yeum, Jeong-Hyun (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University) ;
  • Ghim, Han-Do (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Se-Guen (Division of Nano & Bio Technology, Daegu Gyungbuk Institute of Science & Technology) ;
  • Lee, Ga-Hyun (Division of Functional Crop Resource Development, Department of Functional Crop, National Institute of Crop Science) ;
  • Lee, Hyun-Ju (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University) ;
  • Han, Sang-Ik (Division of Functional Crop Resource Development, Department of Functional Crop, National Institute of Crop Science) ;
  • Choi, Jin-Hyun (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University)
  • 김은정 (경북대학교 기능물질공학과) ;
  • 염정현 (경북대학교 기능물질공학과) ;
  • 김한도 (경북대학교 기능물질공학과) ;
  • 이세근 (대구경북과학기술원 나노바이오연구부) ;
  • 이가현 (대구경북과학기술원 나노바이오연구부) ;
  • 이현주 (대구경북과학기술원 나노바이오연구부) ;
  • 한상익 (국립식량과학원 기능성작물부 신소재개발과) ;
  • 최진현 (경북대학교 기능물질공학과)
  • Received : 2010.10.06
  • Accepted : 2010.11.04
  • Published : 2011.03.25

Abstract

This study is related to the preparation of biocompatible gold nanoparticles (AuNPs) which are stable in aqueous solutions for a long time. Ultrasmall polyethyleneimine (PEI)-capped AuNPs (PEI-AuNPs) with limited agglomeration were prepared in aqueous solutions at room temperature, which were based on the roles of PEI as a reductant and a stabilizer. PEI-AuNPs with an average size of 8~12 nm formed highly stable nanocolloids with an average hydrodynamic cluster size of around 50 nm in aqueous media. At a low concentration of metal precursor hydrogen tetrachloroaurate (III), the particle size was reduced noticeably. The typical peaks of gold were observed in the X-ray diffraction pattern of AuNPs. The cell viability of 98% was obtained in the case of PEI-AuNPs, while PEI was cytotoxic. The PEI-AuNP is considered to be a potential candidate as a contrast agent for computed tomography.

본 연구는 수계에서 오랜 시간 동안 안정한 생체적합 금 나노업자의 제조에 관한 것으로, 환원제와 안정제의 역할을 동시에 수행하는 폴리에틸렌이민을 이용해 응집성이 낮은 초미립 폴리에틸렌이민 금 나노입자를 상온의 수용액 상에서 합성하였다. 폴리에틸렌이민 금 나노입자의 평균 입자크기는 8~12 nm이었고, 수계의 나노콜로이드 %에서 50nm 내외의 클러스터를 형성하였으며, 매우 뛰어난 안정성을 보였다. 상대적으로 낮은 금속 전구체의 농도에서 나노입자를 제조하였을 때, 입자의 크기가 두드러지게 감소하는 경향을 나타내었다. 폴리에틸렌이민-금 나노입자의 X-선 회절분석 결과, 금에서 나타나는 전형적인 결정 피크가 발견되었다. 또한 세포배양실험 결과, 폴리에틸렌이민과는 달리 폴리에틸렌이민-금 나노입자는 98%의 세포 생존율을 보여 세포독성은 거의 없는 것으로 나타났다. 이상의 결과로부터 본 연구에서 합성된 폴리에틸렌이민-금 나노입자는 CT 조영제 등으로의 활용이 기대된다.

Keywords

References

  1. T. T. Andrew, C. A. Mirkin, and R. L. Letsinger, Science, 289, 1757 (2000). https://doi.org/10.1126/science.289.5485.1757
  2. G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, Appl. Phys. Lett., 89, 1819 (2006).
  3. A. Henglein, J. Phys. Chem., 97, 5457 (1993). https://doi.org/10.1021/j100123a004
  4. R. C. Hayward, D. A. Saville, and I. A. Aksay, Nature, 404, 56 (2000). https://doi.org/10.1038/35003530
  5. M. M. Miranda, B. Pergolese, A. Bigotto, and A. J. Giusti, Colloidal Interface Sci., 314, 540 (2007). https://doi.org/10.1016/j.jcis.2007.05.089
  6. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, J. Phys. Chem. B, 108, 1919 (2004). https://doi.org/10.1021/jp0371229
  7. S. M. Moghimi, A. C. Hunter, and J. C. Murray, FASEB J., 19, 311 (2005). https://doi.org/10.1096/fj.04-2747rev
  8. N. L. Rosi and C. A. Mirkin, Chem. Rev., 105, 1547 (2005). https://doi.org/10.1021/cr030067f
  9. J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, and J. Cheon, J. Nat. Med., 13, 95 (2006).
  10. D. K. Kim, M. Mikhaylova, F. H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, and M. Muhammed, Chem. Mater., 15, 4343 (2003). https://doi.org/10.1021/cm031104m
  11. S. Kim, Y. T. Lim, E. G. Soltesz, A. M. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevie, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Nat. Biotechnol., 22, 93 (2004). https://doi.org/10.1038/nbt920
  12. M. E. Akerman, W. C. W. Chen, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, Proc. Natl. Acad. Sci. U.S.A., 99, 12617 (2002). https://doi.org/10.1073/pnas.152463399
  13. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett., 5, 709 (2005). https://doi.org/10.1021/nl050127s
  14. D. Boyer, P. Tamarat, A. Maali, and B. Lounis, Science, 297, 1160 (2002). https://doi.org/10.1126/science.1073765
  15. W. Krouse, Adv. Drug Deliver. Rev., 37, 159 (1999). https://doi.org/10.1016/S0169-409X(98)00105-7
  16. W. Krause and P. W. Schneider, Topics in Current Chemistry, Springer, Heidelberg, 2002.
  17. I. Hizoh and C. Haller, Invest. Radiol., 37, 428 (2002). https://doi.org/10.1097/00004424-200208000-00003
  18. C. Haller and I. Hizoh, Invest. Radiol., 39, 149 (2004). https://doi.org/10.1097/01.rli.0000113776.87762.49
  19. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Br. J. Radiol., 79, 248 (2006). https://doi.org/10.1259/bjr/13169882
  20. V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, Small, 3, 333 (2007). https://doi.org/10.1002/smll.200600427
  21. D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, J. Am. Chem. Soc., 129, 7661 (2007). https://doi.org/10.1021/ja071471p
  22. Y. Sun and Y. Xia, Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  23. T. P. Sau and C. J. Murphy, Langmuir, 20, 6414 (2004). https://doi.org/10.1021/la049463z
  24. C. S. Ah, Y. J. Yun, H. J. Park, W. J. Kim, D. H. Ha, and W. S. Yun, Chem. Mater., 17, 5558 (2005). https://doi.org/10.1021/cm051225h
  25. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, Langmuir, 21, 10644 (2005). https://doi.org/10.1021/la0513712
  26. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, Small, 1, 325 (2005). https://doi.org/10.1002/smll.200400093
  27. R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, Nano Lett., 12, 4593 (2008).
  28. S. Kobayashi, K. Hiroishi, M. Tokunoh, and T. Saegusa, Macromolecules, 20, 1496 (1987). https://doi.org/10.1021/ma00173a009
  29. I. Hussain, M. Brust, A. J. Papworth, and A. I. Cooper, Langmuir, 19, 4831 (2003). https://doi.org/10.1021/la020710d
  30. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, T. Vezmar, and R. L. Whetten, J. Phys. Chem. B, 101, 3706 (1997). https://doi.org/10.1021/jp962922n
  31. X. Sun, X. Jiang, S. Dong, and E. Wang, Macromol. Rapid Commun., 24, 1024 (2003). https://doi.org/10.1002/marc.200300093