DOI QR코드

DOI QR Code

Application of AuNPs immobilized on UV Cross-linked P4VP Thin Film as pH Nanosensors

pH 나노센서로의 응용을 위한 UV-가교 P4VP 박막에 고정한 금 나노입자의 특성

  • 김민성 (부경대학교 화상정보공학부) ;
  • 정연태 (부경대학교 화상정보공학부)
  • Published : 2008.11.01

Abstract

In this report, we describe the use of gold nanoparticles (AuNPs) immobilized on pH. responsive, cross-linked poly(4-vinylpyridine) (P4VP) thin films, as a potential application for pH nanosensors. The methodology is based on the variation in surface plasmon resonance of immobilized AuNPs with changing the interparticle distances, caused by the swelling/deswelling of the pH responsive P4VP polymer films. The change in optical properties of the immobilized AuNPs in response to the pH of surrounding media was investigated by a simple yet powerful tool; UV-vis absorption spectroscopy. The swelling of the P4VP chains at pH 2 causes an increase in the interparticle distances of immobilized AUNPS ($\sim20nm$) and hence leads to a blue shift of 48 nm in their surface plasmon resonance band peak. On the other hand, when the surrounding media was altered from pH 2 to 10, a red shift of absorption maxima was observed. The changes were rapid, and the effect was reversible. This system could prove to be useful in fabricating nanosensors for detecting the pH or pH changes of surrounding aqueous medium.

Keywords

References

  1. R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents", Nano Lett., Vol. 7, No. 8, p. 1113, 2007 https://doi.org/10.1021/nl062317o
  2. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and properties of nanocrystals of different shapes", Chem. ReV., Vol. 105, No. 4, p. 1025, 2005 https://doi.org/10.1021/cr030063a
  3. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A hybrid plasmonic nanostructure", Nano Lett., Vol. 6, No. 4, p. 827, 2006 https://doi.org/10.1021/nl060209w
  4. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, "One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes", J. Am. Chem. Soc., Vol. 120, No. 9, p. 1959, 1998 https://doi.org/10.1021/ja972332i
  5. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization", J. Am. Chem. Soc., Vol. 122, No. 38, p. 9071, 2000 https://doi.org/10.1021/ja001215b
  6. E. Katz and I. Willner, "Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications", Angew. Chem., Int. Ed., Vol. 43, No. 45, p. 6042, 2004 https://doi.org/10.1002/anie.200400651
  7. J. K. Lim and S. W. Joo, "Gold nanoparticle- based pH sensor in highly alkaline region at pH > 11: Surface-enhanced raman scattering study", Appl. Spectrosc., Vol. 60, No. 8, p. 847, 2006 https://doi.org/10.1366/000370206778062183
  8. E. Majid, S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong, "Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis", Anal. Chem., Vol. 78, No. 3, p. 762, 2006 https://doi.org/10.1021/ac0513562
  9. D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, "Glucose sensing using near-infrared surface- enhanced raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy", Anal. Chem., Vol. 77, No. 13, p. 4013, 2005 https://doi.org/10.1021/ac0501238
  10. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss", Appl. Phys. Lett., Vol. 81, No. 9, p. 1714, 2002 https://doi.org/10.1063/1.1503870
  11. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides", Nat. Mater., Vol. 2, p. 229, 2003 https://doi.org/10.1038/nmat852
  12. M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical near-field of gold nanoparticle chains", Opt. Commun., Vol. 248, p. 543, 2005 https://doi.org/10.1016/j.optcom.2004.12.023
  13. R. Bukasov and J. S. Shumaker-Parry, "Highly tunable infrared extinction properties of gold nanocrescents", Nano Lett., Vol. 7, No. 5, p. 1113, 2007 https://doi.org/10.1021/nl062317o
  14. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayde, "Chemistry and properties of nanocrystals of different shapes", Chem. Rev., Vol. 105, No. 4, p. 1025, 2005 https://doi.org/10.1021/cr030063a
  15. H. Wang, D. W. Bran, F. Le, P. Nordlander, and N. J. Halas, "Nanorice: A hybrid plasmonic nanostructure", Nano Lett., Vol. 6, No. 4, p. 827, 2006 https://doi.org/10.1021/nl060209w
  16. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA array detection with nanoparticle probes", Science, Vol. 289, p. 1757, 2000 https://doi.org/10.1126/science.289.5485.1757
  17. X. G. Peng and M. Xiao, "Photoactivated CdSe nanocrystals as nanosensors for gases", Nano Lett., Vol. 3, No. 6, p. 819, 2003 https://doi.org/10.1021/nl0340935
  18. A. N. Shipway, E. Katz, and J. Willner, "Nanoparticle arrays on surfaces for electronic, optical, and sensor applications", Chem. Phys. Chem., Vol. 1, No. 1, p. 18, 2000 https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  19. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles", Science, Vol. 277, p. 1078, 1997 https://doi.org/10.1126/science.277.5329.1078
  20. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization", J. Am. Chem. Soc., Vol. 122, No. 38, p. 9071, 2000 https://doi.org/10.1021/ja001215b
  21. E. Katz and I. Willner, "Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications", Angew. Chem., Int. Ed., Vol. 43, No. 45, p. 6042, 2004 https://doi.org/10.1002/anie.200400651
  22. E. S. Gil and S. M. Hudson, "Stimuli- reponsive polymers and their bioconjugates", Prog. Polym. Sci., Vol. 29, No. 12, p. 1173, 2004 https://doi.org/10.1016/j.progpolymsci.2004.08.003
  23. M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. Van Horn, Z. Guan, G. Chen, and R. S. Krishnan, "General strategies for nanoparticle dispersion", Science, Vol. 311, p. 1740, 2006 https://doi.org/10.1126/science.1122225
  24. S. Tyagi, J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using nanocomposite coatings to heal surface defects", Macromolecules, Vol. 37, No. 24, p. 9160, 2004 https://doi.org/10.1021/ma048773l
  25. G. Smrati, U. Petra, A. Mukesh, C. Severine, O. Ulrich, and S. Manfred, "Immobilization of silver nanoparticles on responsive polymer brushes", Macromolecules, Vol. 41, No. 8, p. 2874, 2008 https://doi.org/10.1021/ma800204h
  26. S. Malynych, I. Luzinov, and G. Chumanov, "Poly(Vinyl Pyridine) as a universal surface modifier for immobilization of nanoparticles", J. Phys. Chem. B., Vol. 106, No. 6, p. 1280, 2002 https://doi.org/10.1021/jp013236d
  27. S. T. Milner, "Polymer brushes", Science, Vol. 251, p. 905, 1991 https://doi.org/10.1126/science.251.4996.905
  28. A .Halperin, M. Tirrell, and T. P. Lodge, "Graft copolymerization of 2-acrylamido-2- methyl-1-propanesulphonic acid onto carboxy- methylcellulose (sodium salt) using bromate/ thiourea redox pair", AdV. Polym. Sci., Vol. 100, No. 1, p. 31, 1992 https://doi.org/10.1007/BFb0051635
  29. I. Luzinov, S. Minko, and V. V. Tsukruk, "Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers", Prog. Polym. Sci., Vol. 29, No. 7, p. 635, 2004 https://doi.org/10.1016/j.progpolymsci.2004.03.001
  30. M. Biesalski and J. Ruhe, "Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface", Macromolecules, Vol. 32, No. 7, p. 2309, 1999 https://doi.org/10.1021/ma980628i
  31. L. Ionov, S. Sapra, A. Synytska, A. L. Rogach, M. Stamm, and S. Diez, "Fast and spatially resolved environmental probing using stimuli-responsive polymer layers and fluorescent nanocrystals", AdV. Mater., Vol. 18, No. 11, p. 1453, 2006 https://doi.org/10.1002/adma.200502686
  32. I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, "Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy", J. Am. Chem. Soc., Vol. 126, No. 49, p. 15950, 2004 https://doi.org/10.1021/ja044575y
  33. M. Yan and B. Harnish, "A simple method for the attachment of polymer films on solid substrates", Adv. Mater., Vol. 15, No. 3, p. 244, 2003 https://doi.org/10.1002/adma.200390057
  34. M. S. Kim, A. K. Nanjundan, J. S. Kim, B. G. Cho, and Y. T. Jeong "Architectures of bilayered gold nanoparticles on UV cross- linked poly(4-vinylpyridine) thin films", J. Nanosci. Nanotechnol.(In press)
  35. G. Frens, "Controlled nucleation for regulation of the particle size in monodisperse gold suspensions", Nature, Vol. 241, p. 20, 1973
  36. U. Kreibig and L. Genzel, "Optical absorption of small metallic particles", Surf. Sci., Vol. 156, p. 678, 1985 https://doi.org/10.1016/0039-6028(85)90239-0
  37. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, "Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters", J. Phys. Chem. B., Vol. 104, No. 3, p. 564, 2000 https://doi.org/10.1021/jp991889c
  38. G. Mie, "Beitrage zur optik truber medien, speziell kolloidaler metallosungen", Ann. Phys., Vol. 25, p. 377, 1908
  39. N. Houbenov, S. Minko, and M. Stamm, "Mixed polyelectrolyte brush from oppositely charged polymers for switching of surface charge and composition in aqueous environment", Macromolecules, Vol. 36, No. 16, p. 5897, 2003