• Title/Summary/Keyword: Attitude Error

Search Result 339, Processing Time 0.024 seconds

Design of the RLG Current Stabilizer for Attitude Control in the Satellite (저궤도 위성 자세제어용 RLG 전류 안정화 회로 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.98-101
    • /
    • 2008
  • In this paper, we describe the RLG current stabilizer circuit for attitude control in the satellite. The RLG makes use of the Sagnac effect within a resonant of a HeNe laser. The difference between two discharge currents causes one of the gyro bias errors. The theoretical background and current stabilizer are introduced. It is verified that the circuit designed is applicable to the test of input voltage and temperature.

Attitude Control of Satelite by Variable Structure Ccontroller (가변구조 제어기를 이용한 인공위성의 자세제어)

  • 조윤철;박수홍;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.463-468
    • /
    • 1990
  • A VSC law is derived for the attitude control of an orbiting spacecraft in the presence of disturbance and parameters variation using reaction jets. The switching surface was chosen to be a linear function of tracking error, its derivative and integral. Simulation results are presented to show that in the closed-loop system, precise attitude control is accomplished in spite of uncertainty in the system.

  • PDF

Attitude Estimation using Adaptive Extended Kalman Filter (적응 확장 칼만 필터를 이용한 3차원 자세 추정)

  • Suh, Young-Soo;Shin, Yeong-Hun;Park, Sang-Kyeong;Kang, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.41-43
    • /
    • 2004
  • This paper is concerned with attitude estimation using low cost, small-sized accelerometers and gyroscopes. A two step extended Kalman filter is proposed, which adaptively compensates external acceleration. External acceleration is the main source of estimation error. In the proposed filter, direction of external acceleration is estimated. According to the estimated direction, the accelerometer measurement covariance matrix of the two step extended Kalman filter is adjusted. The proposed algorithm is verified through experiments.

  • PDF

Satellite Attitude Control on Reaction Wheel Low-Speed Region (반작용휠 저속구간에서의 위성자세제어)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.967-974
    • /
    • 2017
  • Reaction wheel shows nonlinear torque response on low-speed region due to friction. Thus precise satellite attitude control on this region is hard to achieve. Previous research tries to solve this problem, by compensating friction or applying dither command. However, due to difficulties of drag torque modeling or frequent zero wheel speed crossing, these methods are not suitable to apply on the real satellite attitude control. To solve this problem, we propose the attitude controller gain adjustment method based on the attitude error.

Attitude Estimation of an Aircraft using Image Data (영상데이타를 이용한 항공기 자세각 추정)

  • Park, Sung-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.44-50
    • /
    • 2011
  • This paper presents the algorithm for attitude determination of an aircraft using binary image. An image feature vector, which is invariant to translation, scale and rotation, is constructed to capture the functional relations between the feature vector and the corresponding aircraft attitude. An iterated least squares method is suggested for estimating the attitude of given aircraft using the constructed feature vector library. Simulation results show that the proposed algorithm yields good estimates of aircraft attitude in most viewing range, although a relatively large error occurs in some limited viewing direction.

Precise Attitude Determination using Global Positioning Systems (위성 항법 시스템을 이용한 정밀 자세 결정)

  • Ryu, Hee-Seob;Ra, Seung-Ho;Kwon, Tae-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.274-277
    • /
    • 2002
  • This paper deals with the attitude determination using GPS carrier phase. The main factors on attitude reliability are accuracy, error factors and the real-time ambiguity resolution speed. Firstly, these factors are reviewed. And then, the attitude reliability is improved by applying the averaging method. Finally, the attitude determination software is verified by the experiments. The accuracy of the proposed attitude determination method is 0.013$^{\circ}$ PE in live test. This result is more accurate than the existing INS equipment.

  • PDF

Development of Horizontal Attitude Monitoring System for Agricultural Robots (농업 로봇 용 수평 자세 모니터링 시스템 개발)

  • Kim, Sung Deuk;Kim, Cheong Worl;Kwon, Ik Hyun;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • In this paper, we have development of horizontal attitude monitoring system for agricultural robots. A two-axis gyro sensor and a two-axis accelerometer sensor are used to measure the horizontal attitude angle. The roll angle and pitch angle were measured through the fusion of the gyro sensor signal and the acceleration sensor signal for the horizontal attitude monitoring of the robot. This attitude monitoring system includes GPS and Bluetooth communication module for remote monitoring. The roll angle and pitch angle can be measured by the error of less than 1 degree and the linearity and the reproducibility of the output signal are excellent.

Multigroup Generalizability Analysis of Creative Attitude Scale-Korea for Mathematically Gifted and General Students in Middle Schools (수학적 창의성 태도 검사에서 수학영재와 일반학생의 다집단 일반화가능도 분석)

  • Kim, Sungyeun
    • Communications of Mathematical Education
    • /
    • v.31 no.1
    • /
    • pp.49-70
    • /
    • 2017
  • The purpose of this study was to investigate the relative influence of multiple error sources and to find optimal measurement conditions that obtain a desired level of reliability of a creative attitude test in mathematical creativity. This study analyzed the scores of the Creative Attitude Scale-Korea allowed to access publicly of 125 general students and 109 mathematically gifted students by performing a multivariate generalizability analysis. The main results were as follows. First, based on reliability, the Creative Attitude Scale-Korea was measured less precisely for mathematically gifted students. On the contrary, based on the conditional standard error of measurement, it was measured less precisely for general students. However, the Creative Attitude Scale-Korea showed strong reliability in both groups. Second, the optimal weights should adjust to .3, .3, .4 in mathematically gifted students and .4, .4, .2 in general students with three scoring components of divergent attitude, problem solving attitude, and convergent attitude based on the maximum reliability. Third, to approach desirable reliability, it is possible to use one component of divergent attitude in general students but three components of divergent attitude, problem solving attitude, and convergent attitude in mathematically gifted students. Finally this study proposed application plans for the Creative Attitude Scale-Korea and future directions of research.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

An Analysis of the Attitude Estimation Errors Caused by the Deflection of Vertical in the Initial Alignment (초기정렬에서 수직편향으로 인한 자세 추정 오차 분석)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.235-243
    • /
    • 2022
  • In this paper, in the case of an inertial navigation system, the posture estimation error in the initial alignment due to vertical deflection is analyzed. Posture estimation error due to DOV was theoretically analyzed based on the speed and posture error of INS. Simulations were performed to verify the theoretical grinding, and the results were in good agreement. For example, in the case of η=20", an alignment error of ϕN=0.00287°, ϕU=0.00196° occurred, and in the case of 𝜉=20", an error of ϕE= -0.00286° occurred. Through this, it was confirmed that the vertical posture error caused by the DOV occurred as a coupling characteristic of the INS posture error. It has been shown that an additional posture error may occur due to the DOV, which was not considered in the existing INS alignment, which means that correction for the DOV must be considered when applying high-precision INS.