• Title/Summary/Keyword: Attenuation Estimation

Search Result 161, Processing Time 0.025 seconds

Butterworth Window for Power Spectral Density Estimation

  • Yoon, Tae-Hyun;Joo, Eon-Kyeong
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.292-297
    • /
    • 2009
  • The power spectral density of a signal can be estimated most accurately by using a window with a narrow bandwidth and large sidelobe attenuation. Conventional windows generally control these characteristics by only one parameter, so there is a trade-off problem: if the bandwidth is reduced, the sidelobe attenuation is also reduced. To overcome this problem, we propose using a Butterworth window with two control parameters for power spectral density estimation and analyze its characteristics. Simulation results demonstrate that the sidelobe attenuation and the 3 dB bandwidth can be controlled independently. Thus, the trade-off problem between resolution and spectral leakage in the estimated power spectral density can be overcome.

  • PDF

An Analysis of Issues Related to Attenuation by Atmospheric Factors in the Frequency Bands for Radar Systems (환경 요인에 의한 레이더 주파수 대역별 감쇠 영향성 분석)

  • Taeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.657-664
    • /
    • 2024
  • In the proposed paper, we analyzed the attenuation by atmospheric factors in the frequency bands for Radar. Radio frequencies using radar systems is susceptible to attenuation by atmospheric factors. The proposed paper analyze the attenuation by atmospheric factors in L, S, C and X bands. Among the attenuation of signals by atmospheric factors, the attenuation by water vapor and oxygen, which is atmospheric attenuation compared to the detection range, is at least 0.416 dB in the L band and 2.6 dB in the X band. The attenuation by rainfall is at least 0.06 dB in the L band and 20.2 dB in the X band. Finally, the attenuation by atmospheric factors is at least 0.416 dB in the L band and 22.8 dB in the X band. In conclusion, it is judged that the attenuation of atmospheric and rainfall is minimal in the L, S, and C bands, and that the influence of attenuation is large in the X band.

Estimation of Medical Ultrasound Attenuation using Adaptive Bandpass Filters (적응 대역필터를 이용한 의료 초음파 감쇠 예측)

  • Heo, Seo-Weon;Yi, Joon-Hwan;Kim, Hyung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.43-51
    • /
    • 2010
  • Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Estimation of Path Attenuation Effect from Ground Motion in the Korean Peninsula using Stochastic Point-source Model (추계학적 점지진원 모델을 사용한 한반도 지반 운동의 경로 감쇠 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.

An Efficient Channel Estimation Method in Rapid Fading Channel for OFDM Systems (OFDM 시스템을 위한 고속의 채널환경에서의 효율적인 채널추정기법)

  • Kang, Yeon-Seok;Hwang, Tae-Wook;Kim, Young-Soo;Suh, Duk-Young;Kim, Jin-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.136-144
    • /
    • 2004
  • In this paper, we present an improved channel estimation method for orthogonal frequency division multiplexing systems using pilot-symbol-aided parameter estimation. Conventional linear minimum mean square error(LMMSE) channel estimation method uses only pilot symbols for channel estimation. So, as the fading channel varies rapidly, a performance is decreased. We proposed a channel estimation method, which estimates channel attenuation in the middle of pilots using pilot symbols and then estimates the whole channel attenuation with pilots and estimated channel attenuation. Compared with conventional LMMSE channel estimation method, the proposed method is significantly robust in a rapid fading channel with high Doppler frequency and delay spread.

  • PDF

Estimation of Attenuation Coefficient based on Ultrasonic Image for quantification of the Liver Diseases (간 병변의 정량화를 위한 초음파 영상 신호의 감쇄상수 추정)

  • 우광방;신동호;이성모;신영민;이노성;오성권
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 1988
  • To provide a quantitative parameter of evaluating diagnosis of the liver diseases accurately, the ultrasonic attenuation coefficient was estimated from liver phantoms, 15 normal human livers and 30 liver disease patients. Two kind of phantoms(No.1: 1552m/s, No.2: 1562m/s) which have velocity (1560m/s) similar to that in human liver were constructed and their ultrasonic attenuation coefficients were determined. In this paper the spectral-shift approach and spectral-difference approach were used for estimating ultrasonic attenuation coefficient, \ulcornerdB/Cm.MHz). These two approaches were utilized to esitmate for 15 normal humans without any liver disease and 30 liver disease patients. The results indicate that the two types of phantoms produce the value of near the suggested value of 0.5 and the attenuation coefficients of hepatoma, normal liver, corrhosis, fatty liver and hepatitis show decreasing value in order named, suggesting that the present study can be of clinical value incorrelating the estimated attenuation coefficidents with the liver diseases.

  • PDF

A Simulation of Earthquake Loss Estimation for a Gyeongju Event (경주지역 발생 지진에 대한 지진손실예측 시뮬레이션)

  • Kang, Su-Young;Kim, Kwang-Hee;Suk, Bong-Chool;Yoo, Hai-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 2008
  • Knowledge of expected losses in terms of physical, economic, and social damages due to a potential earthquake will be helpful in the effort to mitigate seismic hazards. In this study, losses due to a magnitude 6.7 scenario earthquake in the Gyeongju area have been estimated using the deterministic method in HAZUS. The attenuation relation proposed by Sadigh et al.(1997) for site classes B, C, and D, which are assumed to represent the characteristics of the strong-motion attenuation in the Korean Peninsula, has been applied. Losses due to the hypothetical earthquake have been also calculated using other attenuation relationships to examine their roles in the loss estimation. The findings indicate differences among the estimates based on various attenuation relationships. Estimated losses of the Gyeongju area by a scenario earthquake using HAZUS should be seriously considered in the planning of disaster response and hazard mitigation.

Attenuation Estimation of Soft Tissue by the Entropy Method and Statistical Averaging of Speckle Patterns (스펙클 패턴의 통계적 평균과 엔트로피 방식에 의한 초음파 감쇄계수 추정방법)

  • Song, T.K;Park, J.C;Park, S.B
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.253-260
    • /
    • 1989
  • The time domain methods of estimating the attenuation coefficient are generally based on the analysis of statisical properties of the reflected echoes form an attenuating medium. Hence, it is often required to have a large number of data samples in order to obtain a statistically stable estimation result. In the attenuation estimation problem, this means that many different speckle patterns are required in the spatial resolution volume of an attenLlation image. In this paper, by using the fact that the speckle pattern Is sensitive to the point spread function of the ultrasound beam, we suggest a method to generate the statiscally uncorrelated or slightly correlated data samples in a given region by rotating a linear transducer and carrying out lateral scans for all rotating angles. This technique is applied to the entropy method for attenuation estimation proposed recently by the authors where the performance is verified by experiments using a tissue equivalent phantom.

  • PDF

Assessment of Acoustic Iterative Inverse Method for Bubble Sizing to Experimental Data

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Kim, Byoung-Nam;Yoon, Suk-Wang
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2006
  • Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125-130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.