• Title/Summary/Keyword: Attention module

Search Result 242, Processing Time 0.027 seconds

Attention-based for Multiscale Fusion Underwater Image Enhancement

  • Huang, Zhixiong;Li, Jinjiang;Hua, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.544-564
    • /
    • 2022
  • Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.

Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model

  • Jia, Xibin;Qian, Chen;Yang, Zhenghan;Xu, Hui;Han, Xianjun;Ren, Hao;Wu, Xinru;Ma, Boyang;Yang, Dawei;Min, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.16-37
    • /
    • 2022
  • Accurate liver segment segmentation based on radiological images is indispensable for the preoperative analysis of liver tumor resection surgery. However, most of the existing segmentation methods are not feasible to be used directly for this task due to the challenge of exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. To address this problem, we propose a novel deep learning based segmentation model, called Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model can improve the segmentation accuracy of liver segments with enhancing the edges including the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, which composes of a spatial attention module and a semantic attention module. The spatial attention module enhances the weights of key edge regions by concerning about the salient intensity changes, while the semantic attention amplifies the contribution of filters that can extract more discriminative feature information by weighting the significant convolution channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, which annotated by several professional radiologists. Comparing with several state-of-the-art methods and baseline segmentation methods, we achieve the best results on this clinic liver segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive Predicted Value reach 89.01%, 87.71% and 90.67%, respectively.

Fabrication of Shingled Design Bifacial c-Si Photovoltaic Modules (슁글드 디자인 고출력 양면수광형 단결정 실리콘 태양광 모듈 제작)

  • Park, Min-Joon;Kim, Minseob;Shin, Jinho;Byeon, Su-Bin;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Bifacial photovoltaic (PV) technology has received considerable attention in recent years due to the potential to achieve a higher annual energy yield compared to its monofacial PV systems. In this study, we fabricated the bifacial c-Si PV module with a shingled design using the conventional patterned bifacial solar cells. The shingled design PV module has recently attracted attention as a high-power module. Compared to the conventional module, it can have a much more active area due to the busbar-free structure. We employed the transparent backsheet for a light reception at the rear side of the PV module. Finally, we achieved a conversion power of 453.9 W for a 1300 mm × 2000 mm area. Moreover, we perform reliability tests to verify the durability of our Shingled Design Bifacial c-Si Photovoltaic module.

The Study on the Development of the Car Driver's Front Attention Enhancement System using the Car Camera (차량카메라 영상을 이용한 운전자 전방 주의력향상 시스템 개발에 관한 연구)

  • Lee, Sang-Ha;Shim, Min Kyung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • In this paper for developing and implementing the car driver's front lane attention enhancement developed system using the car camera. The developed system automatically alarm the car driver when front cars make the dangerous situation. We use Raspberry Pi camera module V2 as car camera module, Raspberry Pi 3 board as hardware main board of implementing embedded system and develop the application library module which can be operated on the Raspberry situation. The application library module widely consist of two part, front car recognition part and dangerous situation distinguish part. Our developed system satisfy the performance test of the target system at the software test certification laboratory of TTA(Telecommunication Technology Association). We test four items as attentive car recognition ability at day and night, system performance, response time. We get the performance of developed system based on the four goal. The car driver's front lane attention enhancement system in this paper will be widely used at the ADAS(Advanced Driving Assistance System) because of the better performance and function.

Recovery of underwater images based on the attention mechanism and SOS mechanism

  • Li, Shiwen;Liu, Feng;Wei, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2552-2570
    • /
    • 2022
  • Underwater images usually have various problems, such as the color cast of underwater images due to the attenuation of different lights in water, the darkness of image caused by the lack of light underwater, and the haze effect of underwater images because of the scattering of light. To address the above problems, the channel attention mechanism, strengthen-operate-subtract (SOS) boosting mechanism and gated fusion module are introduced in our paper, based on which, an underwater image recovery network is proposed. First, for the color cast problem of underwater images, the channel attention mechanism is incorporated in our model, which can well alleviate the color cast of underwater images. Second, as for the darkness of underwater images, the similarity between the target underwater image after dehazing and color correcting, and the image output by our model is used as the loss function, so as to increase the brightness of the underwater image. Finally, we employ the SOS boosting module to eliminate the haze effect of underwater images. Moreover, experiments were carried out to evaluate the performance of our model. The qualitative analysis results show that our method can be applied to effectively recover the underwater images, which outperformed most methods for comparison according to various criteria in the quantitative analysis.

An end-to-end synthesis method for Korean text-to-speech systems (한국어 text-to-speech(TTS) 시스템을 위한 엔드투엔드 합성 방식 연구)

  • Choi, Yeunju;Jung, Youngmoon;Kim, Younggwan;Suh, Youngjoo;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 2018
  • A typical statistical parametric speech synthesis (text-to-speech, TTS) system consists of separate modules, such as a text analysis module, an acoustic modeling module, and a speech synthesis module. This causes two problems: 1) expert knowledge of each module is required, and 2) errors generated in each module accumulate passing through each module. An end-to-end TTS system could avoid such problems by synthesizing voice signals directly from an input string. In this study, we implemented an end-to-end Korean TTS system using Google's Tacotron, which is an end-to-end TTS system based on a sequence-to-sequence model with attention mechanism. We used 4392 utterances spoken by a Korean female speaker, an amount that corresponds to 37% of the dataset Google used for training Tacotron. Our system obtained mean opinion score (MOS) 2.98 and degradation mean opinion score (DMOS) 3.25. We will discuss the factors which affected training of the system. Experiments demonstrate that the post-processing network needs to be designed considering output language and input characters and that according to the amount of training data, the maximum value of n for n-grams modeled by the encoder should be small enough.

Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images (CT 영상에서 폐 결절 분할을 위한 경계 및 역 어텐션 기법)

  • Hwang, Gyeongyeon;Ji, Yewon;Yoon, Hakyoung;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.265-272
    • /
    • 2022
  • As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.

Performance Analysis of Exercise Gesture-Recognition Using Convolutional Block Attention Module (합성 블록 어텐션 모듈을 이용한 운동 동작 인식 성능 분석)

  • Kyeong, Chanuk;Jung, Wooyong;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.155-161
    • /
    • 2021
  • Gesture recognition analytics through a camera in real time have been widely studied in recent years. Since a small number of features from human joints are extracted, low accuracy of classifying models is get in conventional gesture recognition studies. In this paper, CBAM (Convolutional Block Attention Module) with high accuracy for classifying images is proposed as a classification model and algorithm calculating the angle of joints depending on actions is presented to solve the issues. Employing five exercise gestures images from the fitness posture images provided by AI Hub, the images are applied to the classification model. Important 8-joint angles information for classifying the exercise gestures is extracted from the images by using MediaPipe, a graph-based framework provided by Google. Setting the features as input of the classification model, the classification model is learned. From the simulation results, it is confirmed that the exercise gestures are classified with high accuracy in the proposed model.

A Method of Detection of Deepfake Using Bidirectional Convolutional LSTM (Bidirectional Convolutional LSTM을 이용한 Deepfake 탐지 방법)

  • Lee, Dae-hyeon;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1053-1065
    • /
    • 2020
  • With the recent development of hardware performance and artificial intelligence technology, sophisticated fake videos that are difficult to distinguish with the human's eye are increasing. Face synthesis technology using artificial intelligence is called Deepfake, and anyone with a little programming skill and deep learning knowledge can produce sophisticated fake videos using Deepfake. A number of indiscriminate fake videos has been increased significantly, which may lead to problems such as privacy violations, fake news and fraud. Therefore, it is necessary to detect fake video clips that cannot be discriminated by a human eyes. Thus, in this paper, we propose a deep-fake detection model applied with Bidirectional Convolution LSTM and Attention Module. Unlike LSTM, which considers only the forward sequential procedure, the model proposed in this paper uses the reverse order procedure. The Attention Module is used with a Convolutional neural network model to use the characteristics of each frame for extraction. Experiments have shown that the model proposed has 93.5% accuracy and AUC is up to 50% higher than the results of pre-existing studies.

Semantic Building Segmentation Using the Combination of Improved DeepResUNet and Convolutional Block Attention Module (개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할)

  • Ye, Chul-Soo;Ahn, Young-Man;Baek, Tae-Woong;Kim, Kyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1091-1100
    • /
    • 2022
  • As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.