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Abstract 

 
Accurate liver segment segmentation based on radiological images is indispensable for the 
preoperative analysis of liver tumor resection surgery. However, most of the existing 
segmentation methods are not feasible to be used directly for this task due to the challenge of 
exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. 
To address this problem, we propose a novel deep learning based segmentation model, called 
Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model 
can improve the segmentation accuracy of liver segments with enhancing the edges including 
the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, 
which composes of a spatial attention module and a semantic attention module. The spatial 
attention module enhances the weights of key edge regions by concerning about the salient 
intensity changes, while the semantic attention amplifies the contribution of filters that can 
extract more discriminative feature information by weighting the significant convolution 
channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with 
dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, 
which annotated by several professional radiologists. Comparing with several state-of-the-art 
methods and baseline segmentation methods, we achieve the best results on this clinic liver 
segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive 
Predicted Value reach 89.01%, 87.71% and 90.67%, respectively. 
 
 
Keywords:  Segmentation model, liver segment, attention mechanism, boundary-aware 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022                                17 

1. Introduction 

Liver segmentation is a prerequisite for automatic image analysis, one important step is 
subdividing the liver into anatomical regions, that is, liver segments. According to the widely 
used “Couinaud Classification” [1, 2], lobes of the liver are divided into eight segments based 
on a transverse plane through the bifurcation of the main portal vein. The segmentation of the 
liver into independent units is significantly in surgical treatment, as segment with tumor 
involved can be resected individually without damaging the remaining segments, which could 
preserve the liver function as much as possible. Radiological images like computer 
tomography (CT) or magnetic resonance imaging (MRI) with contrast-agent administration 
could clearly show the anatomic structure such as liver vein, portal vein as well as their 
vascular branches, which are fundamental for the delineation of liver segments. Hence, 
accurate liver segment segmentation based on radiological images is essential and 
indispensable preoperationally for the possible resection management of liver tumor. 

Most existing liver segment segmentation work is based on traditional image processing 
methods and employ similar processing procedures. First, segmentation of the blood vessels 
in the liver is done with kinds of traditional image processing methods. Then, the nearest 
neighbor approximation algorithm is used for liver segment segmentation while taking the 
relative vessel segmentation as a reference [3, 4, 5]. Although using the traditional 
segmentation methods provide the solution of the liver segment segmentation, there still exist 
some shortcomings. Specifically, traditional methods are not good at dealing with blurred 
boundaries, nor can they distinguish which blood vessels can be regarded as the reference for 
segmenting liver segments. Furthermore, these methods are not flexible in fitting to the varied 
characteristics of the data.  

Nowadays, semantic segmentation based on deep learning has been applied in many 
medical scenarios, including organ segmentation [6, 7], vessel segmentation [8, 9], liver tumor 
segmentation [10, 11], 3D Reconstruction [12], and visual enhancement [13]. It is not difficult 
to think that applying deep learning to the liver segmentation task would be a feasible approach. 
However, most of the existing deep learning segmentation methods are not suitable for the 
liver segment segmentation task. Because one of the important basis of liver segment 
segmentation is specific vessels which are normally tiny and slender. These methods do not 
highlight the features of vessels and ignore the boundary details, which can lead to a decrease 
in segmentation accuracy. To address this problem, we propose a novel network framework 
for liver segment segmentation with combining two attention mechanism, named Boundary-
Aware Dual Attention Guided Liver Segment Segmentation Model (BADA). In our BADA, a 
spatial attention module and a semantic attention module are built to perform attention 
weighting in parallel from both pixel and channel dimensions. It reuses the low-level feature 
map with richer boundary position information, and fuses it with the high-level feature map 
with richer semantic feature information as a gated signal to weight the boundary detail 
information. The proposed dual attention processing is employed at every layer at the decoding 
path of U-Net.  

The main contributions of our work are as follows: 
1) We propose a novel Boundary-Aware Dual Attention model (BADA) for liver segment 

segmentation. In our proposed network, the boundary between the liver and its surroundings 
and the boundaries between segments are highlighted. Accordingly, it enhances the accuracy 
of liver segment positioning and boundary recovery. 
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2) A dual attention module is proposed to make full use of both spatial and semantic 

information at every level of U-Net, which facilitate revealing the characteristics of boundaries 
at different scales. 

3) A well-labeled dataset of liver segments is built from clinical cases. Comprehensive 
comparative and ablation experiments have been done on the built dataset. The experiments 
demonstrate that we achieve state-of-the-art results.  

2. Related Work 

2.1 Attention Mechanism 
Attention mechanism was first used in natural language processing and has made great 

progress in computer vision tasks in recent years [14, 15]. The attention mechanism can 
capture the dependencies between pixels and highlight key areas in the image. SE-Net [16] is 
designed for image classification tasks, which employs a channel self-attention module to 
adjust the weight of channels. DA-Net [17] uses the dual attention of spatial and channel to 
enhance the discriminant ability of feature representations for scene segmentation. These 
methods employ the self-attention mechanism and consume a lot of computing resources. 
Moreover, the position information provided by the low-level feature map is not fully utilized. 

2.2 Semantic Segmentation in Biomedical Image 
Olaf Ronneberger et al. proposed a U-shape network for neuronal structure and cells 

segmentation, called U-Net [18], which has become the most common backbone network used 
in biomedical image segmentation. U-Net has symmetric encoding path and decoding path. 
Using skip connection between the same resolution stages, U-Net improves the accuracy of 
feature positioning and boundary recovery. At present, most of the segmentation models of 
biomedical images are variants of U-Net [19, 20, 21]. First, ResUNet [22] and DenseUNet [23] 
are inspired by residual connection and dense connection between convolutional layers, 
respectively. They replace each submodule of U-Net with the module with residual 
connections and dense connections. Although ResUNet is originally suitable for remotely 
sensed data segmentation, it is widely used as a baseline network in the biomedical image 
segmentation tasks, such as ResUNet++ [24]. 

Second, because of the multi-modality characteristics of biomedical images, some 
researchers work on the biomedical image segmentation by using multi-modal fusion method. 
Tseng et al. [25] design a cross-modality method for brain tumor segmentation, which fuses 
four MRI sequences Flair, T1, T1c, and T2. Jia et al. [26] employ a multi-path encoder to fuse 
the multi-modality data to complete the brain tumor segmentation task.  

Currently, attention mechanism, which is widely used in natural language processing and 
natural image analysis, is also applied to biomedical image segmentation. Researchers hope to 
use attention mechanisms to highlight key areas in each image [27, 28]. Attention U-Net [29] 
designs a spatial attention gate to segment gastric cancer and the pancreas by using CT images. 
ET-Net [30] introduces a channel attention mechanism for retina vessel and the lung 
segmentation. 
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Meanwhile, semi-supervised learning, self-supervised learning and the use of transformer 
to process computer vision tasks are also relatively popular. Chen et al. [31] address the 
limitations of U-Net long-range dependency using the global self-attention mechanism innate 
to transformer. Li et al. and Agisilaos Chartsias et al. [32, 33] use a semi-supervised learning 
approach to solve the problem of lack of labeled samples and large number of unlabeled 
samples in medical image segmentation tasks. 

Referring to the previous work and taking the live segment segmentation as problem, we 
propose a modified structure of two attention mechanism with a spatial attention module and 
a semantic attention module. We reuse the low-level and the high-level fused feature map as 
gated signal in the high-level feature learning, which facilitates to highlight the boundary 
impact and accordingly improve the accuracy of segmentation. The experiments in the later 
section demonstrates the effectiveness of our method. 

3. Method 

3.1 Overall architecture of proposed network 
Our boundary-aware dual attention module is inspired by DANet [17]. DANet adopts 

both spatial and channel attention mechanism, which achieves good results for the natural 
image segmentation task. Similarly, we develop a boundary-aware dual gated attention 
mechanism, and apply it on the U-Net backbone network. Due to the symmetric network, U-
Net is useful for recovering the image to the original resolution step by step at the decoding 
path, so that the small details like the vessel boundaries in the image can be maintained. 
Accordingly, deployed the dual attention module at each resolution level of U-Net, the 
boundary recovery performance is supposed to be fostered. Furthermore, the key point of our 
proposed dual gated attention is to use the low-level and the high-level fused feature maps as 
gated signal. So that we enhance awareness to the edges by reusing the information of the low-
level feature map, which retains more prominent boundary information comparing to the high-
level one. By feeding this information together with the current high-level feature into the dual 
gated attention module, the feature differences are increased and boundary information is more 
prominent. Therefore, instead of using self-attention, our model performs gated attention 
weighting with fusing high-level and low-level features.  

The architecture of our proposed network is shown in Fig. 1. In our model, we select U-
Net with residual blocks [34] as the backbone network. The dual attention blocks with 
rectangle boxes denoted in Fig. 1 are added at the skip connection between the left decoding 
paths and the corresponding right encoding paths at each layer. As in the Fig. 1, the overall 
processing procedure of our proposed network is illustrated as follow. Firstly, for each dual 
attention module, the fused adjacent feature maps are loaded, i.e. the low-level feature map 
from the encoding path and upsampled high-level feature map from the decoding path. In our 
liver segment segmentation task, the low-level feature map contains more intensity detail 
information like edges reflecting the boundaries of the liver and the liver segment, while the 
high-level feature map contains more abstract semantic and category information for 
distinguishing the liver area from the background area or between liver segments. The fusion 
of the two feature maps can highlights the boundary and position information of the liver and 
liver segments and enhance the recognition of the boundary points. 
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Fig. 1. Overview of network structure 
 

Then, the fused feature map loaded into dual attention block is processed with counting 
the channel and pixel attention weight maps, respectively. In this way, the pixels around the 
boundary can obtain larger weights at the spatial level, which increases the feature difference. 
At the channel level, channels that contain more discriminative semantic category information 
can obtain larger weights while invalid channels are suppressed with less weights. 

Finally, the original feature map is multiplied with two derived attention maps 
respectively. The element-wise sum is then employed to aggregate two attention-weighted 
feature maps and obtain the final output from each dual attention module. 

 

3.2 Spatial Attention Module 
Boundaries are the edges between the objects, while edges are a set of points with sharp 

intensity changes. Therefore, the possible boundaries between liver segments i.e. blood vessels 
have obvious spatial characteristics of edges with salient intensity changes. To obtain the 
discriminate expression of the image for revealing the boundary attribution, we develop the 
spatial attention module to weight the important spatial information of the feature map. In view 
that edge point positions in different channels of the feature maps ought to be consistence, we 
weight each channel in the feature map using the attention map generated by the same gated 
signal calculation. Thereby, important information such as the boundary information and 
position information of the liver segments will always be highlighted.  

In this module, the fusion feature map is compressed into a single-channel map, and each 
pixel represents a weight, which is multiplied by the original feature map. The detail of the 
proposed spatial attention calculation is introduced as follows. 

As illustrated in Fig. 2(a). First, given the low-level feature 𝐹𝐹𝑙𝑙 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊  from the 
decoding path and the high-level feature 𝐹𝐹ℎ ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊 from the previous layer, we feed them 
into two different convolution kernels 𝑊𝑊𝑙𝑙 ∈ ℝ𝐶𝐶×𝐶𝐶 and 𝑊𝑊ℎ ∈ ℝ𝐶𝐶×𝐶𝐶, and obtain two new feature 
maps 𝐹𝐹𝑙𝑙′ ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊, 𝐹𝐹ℎ′ ∈ ℝ

𝐶𝐶×𝐻𝐻×𝑊𝑊, respectively. Next, we concatenate the two new feature 
maps along the channel dimension to generate the low-level feature and high-lever feature 
fused map 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℝ2𝐶𝐶×𝐻𝐻×𝑊𝑊. The fused map after concatenation is activated once by ReLu, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022                                21 

and then feed into a network consisting of a convolutional layer 𝑊𝑊𝑐𝑐 ∈ ℝ2𝐶𝐶×𝐶𝐶, a BatchNorm 
layer and a ReLu activation function. This operation normalizes the channel dimension of the 
fused map to 𝐶𝐶, i.e. 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(𝑠𝑠) ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊. At this point, the low-level feature map and the high-
level feature map are integrated while keeping the spatial information and the reduced 
dimension. After that, we feed the integrated feature map into a convolutional layer 𝑊𝑊𝑓𝑓 ∈
ℝ𝐶𝐶×1 to compress it to a single-channel feature map. Then, we perform a Sigmoid function to 
normalize it to [0,1] to generate the spatial attention map 𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎

(𝑠𝑠) ∈ ℝ1×𝐻𝐻×𝑊𝑊. Thus, the attention 
map is obtained, where each pixel represents the weight indicating its salient extent in the 
origin feature map from the perspective of spatial view. Finally, we perform an element-wise 
product between the spatial attention map 𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎

(𝑠𝑠)  and the low-level feature map 𝐹𝐹𝑙𝑙 from the same 
resolution stage of the decoding path, to obtain the final weighted feature maps, i.e. 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

(𝑠𝑠) ∈
ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊from the spatial attention module. The entire process is formulated as Eq. (1)-Eq. (4): 

 
         ( ;  )T T

l l lconca h h htF Concat W F b W F b= + +                                     (1) 
                                                ( )

1 1( ( ) )s T
fuse c CONCAT cF W F bσ σ= +                                               (2)    

                                                  ( ) ( )
2 ( )s T s

att f fuse fW F bψ σ= +                                                    (3)                                                                                                                                                                                                                                           

                                                   ( ) ( )s s
att att lF Fψ= ⊗                                                             (4) 

                                          
 

(a) Spatial attention module 

(b) Semantic attention module 
Fig. 2. Boundary-aware dual attention module 
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where 𝑏𝑏𝑙𝑙, 𝑏𝑏ℎ, 𝑏𝑏𝑐𝑐, 𝑏𝑏𝑓𝑓 are bias terms corresponding to different convolutional layers, 𝜎𝜎1and  
𝜎𝜎2 denote the ReLu activation function and the Sigmoid activation function respectively. 

With respect to merge the high-level and low-level feature maps, we don't use the 
element-wise sum method directly, which is employed in Attention U-Net [29]. Instead, we 
adopt the channel dimension concatenation method. In this way, we can use convolution 
operations for fusion to have one more feature learning opportunity, while maintaining the 
consistency of spatial information. 

3.3 Semantic Attention Module 
Each feature map generated from the different kernel filter reflect a certain attribution 

associated with a kind of semantic clues. So, highlighting the relative channels in revealing 
the boundary semantics and suppressing the irrelevant channels can improve the accuracy of 
segmentation. Inspired by the above idea and referring to the channel attention idea, we 
propose our semantic attention module which takes account of the kernel difference in 
reflecting the boundary semantic clues.  

In the semantic attention module, the fused feature map is compressed into a one-
dimensional column vector, which represents the weight of each channel. The semantic 
attention module detailed structure is illustrated in Fig. 2(b), which employs the same gated 
method we proposed in our spatial attention module. Meanwhile, the same feature map 𝐹𝐹𝑙𝑙, 𝐹𝐹ℎ 
as input and shared parameters 𝑊𝑊𝑙𝑙, 𝑊𝑊ℎ of the convolutional layers for the low-level feature 
and the high-level feature are used as in the spatial attention module, respectively. Different 
from the spatial attention module, fused scheme of low-level feature and the high-level feature 
map in the semantic attention module performs an element-wise sum to generate the fused 
map 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(𝑐𝑐) ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊, for this operation is better for maintaining the consistency of semantic 
class (channel) information. Similarly, convolutional layer and fully connected layer are not 
used in this module, which reduces the impact on semantic information and also reduces the 
amount of calculation. After obtaining the fused feature map, we employ the global average 
pooling to downsample each channel map of 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(𝑐𝑐)  to obtain a one-dimensional vector. After 
using the Sigmoid function to activate the one-dimensional vector, the semantic attention map 
𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎

(𝑐𝑐) ∈ ℝ𝐶𝐶×1×1 is obtained. The last step of this module is performing an element-wise product 
between the semantic attention map 𝜓𝜓𝑎𝑎𝑎𝑎𝑎𝑎

(𝑐𝑐)  and lF . Let 𝑏𝑏 = 𝑏𝑏𝑙𝑙 + 𝑏𝑏ℎ, the entire process can be 
formulated as Eq. (5)-Eq. (7): 
                                                        ( )c T T

fuse l l hF W F W F b= + +                                                  (5) 

                                                     ( ) ( )
2 1( ( ( )))c c

att fuseGAP Fψ σ σ=                                                  (6)                                                               

                                                             ( ) ( )c c
att att lF Fψ= ⊗                                                           (7) 

                                                                          

3.4 Aggregation for Attention Module 
The fused attention is obtained by aggregating the two outputs from the parallel attention 

modules. Specifically, we perform an element-wise sum between the outputs of spatial 
attention module 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

(𝑠𝑠) and semantic attention module 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
(𝑐𝑐) to generate a fused attention map. 

Then, we send the fused attention map into a convolution layer with a kernel size of 1 × 1 and 
obtain the final attention map. After that, the final attention map concatenates with the previous 
layer feature map to accomplish the skip connect of U-Net. The whole procedure is illustrated 
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in Fig. 3. As we can see, different from the input of traditional U-Net skip connection, our 
proposed model uses low-level feature maps weighted by boundary-aware dual attention as 
input to enhance the boundary, semantic, and location information. 

Fig. 3. Aggregation Procedure for Attention Module 

3.5 Consideration in determination of Backbone Networks 
FCNs (Fully Convolutional Networks) and U-Net are the two most commonly used 

backbone networks in semantic segmentation. For medical image segmentation tasks, it is 
consensus that U-Net has better performance. Therefore, in the paper, we prefer to use the U-
net as backbone. However, to explore the effectiveness of the symmetric U-net and the 
asymmetric FCN as our backbone, we modify our proposed symmetric based network into 
several asymmetric forms (base on FCNs) in this section. Moreover, we set up an ablation 
experiment in section 4.4 to do the further comparison between the FCN-based and U-Net-
based models. 

Fig. 4. Asymmetric network with 2 upsamples 
 
The decoding path in our proposed U-Net-based model contains four upsample operating 

layers. The feature map loading on each upsample operating layer is weighted with the 
attention map from the dual gated attention module. Besides, three variant FCN-based models 
are built for the comparative analysis, where they perform the upsample operation and the 
attention weighting operation once, twice, and three times, respectively. These upsample 
operations are used to reshape the feature map to the same size of input. Take the FCN-based 
model with two upsample operations as an example, the network structure is shown in Fig. 4. 

3.6 Mixed Loss Function 
Dice loss is one of the most commonly used loss functions for image segmentation as 

shown in Eq. (8). It calculates the coincidence rate between the predicted image and the ground 
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truth. The value range of the dice loss function is [0,1], 0 means completely overlaping, and 1 
indicates totally non-overlaping. 

 
                                                                                       (8) 

 
 
where A and B denote the predict pixels and the ground truth, respectively. 

Cross-entropy loss is another commonly used function by measuring the difference 
between two probability distributions. In the image segmentation task, cross-entropy function 
is defined as Eq. (9) with calculating the average probability difference between pixels of the 
predicted image and the ground truth.  

                               
                                                             (9) 

 
where N denotes the number of pixels, i indicates the i-th pixel in the image, y and 𝑦𝑦� denote 
the one-hot vector of segment mask of the ground truth and the predicted results, respectively. 

Considering the cross-entropy loss is calculated at the pixel level, the training is prone to 
be dominated by the categories with more pixels, and it is not conducive for feature learning 
of small objects. Therefore, the cross-entropy loss is more suitable for the situation where 
sample categories are balanced. In contrast, the Dice loss can deal with unbalanced sample 
categories, but training might be unstable when sample categories are balanced. In view of the 
existence of both balanced categories and unbalanced categories in our data set, therefore, we 
combine these two loss functions. The adopted loss function is defined as Eq. (10): 

 
                                                                     (10) 

 
where 𝜆𝜆1  and 𝜆𝜆2  are hyperparameters. In determining the value of these two 

hyperparameters, we do the following exploration. With the epoch of training increases, the 
gap between the dice loss and the cross-entropy loss is large, which may make the loss function 
retreat to the dice loss. To balance their contribution, we consider to set 𝜆𝜆1 and 𝜆𝜆2=0.1 in the 
experiment. However, experiments show that this hyperparameter setting affects the decline 
of the dice loss, which cause a quick convergence of the dice loss. To eliminate this problem 
and achieve a better result, the final hyperparameter is set with 𝜆𝜆1=𝜆𝜆2=1 

4. Experiments 
In this section, we first introduce our liver segment segmentation dataset and evaluation 

metrics. Then, some ablation experiments are performed to evaluate the effectiveness of key 
modules in our method. Finally, we compare our model with several state-of-the-art methods 
from both qualitative and quantitative aspects. 

 

 (a) Couinaud liver segments method                      (b) 3D reconstruction label 
Fig. 5. Couinaud Segmentation Method 
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4.1 Dataset 
In this study, we collect a dataset with 59 liver MRI from Beijing Friendship Hospital. 

The cases in the dataset are deliberately selected from different liver diseases, such as cyst, 
focal nodular hyperplasia, hemangioma etc. Portal vein phase MRI after contrast-agent 
administration were used to label the main blood vessels such as hepatic veins and portal veins 
by four experienced radiologists.  

We use the Couinaud liver segments method as the liver segment segmentation medical 
standard in the dataset, which is currently one mainstream liver segments definition methods 
[1, 2]. According to this medical criteria, the liver is separated into eight segments (numbered 
Ⅰ to Ⅷ) based on  the vascular supply. Segment Ⅰ is the caudate lobe. Segments Ⅱ and Ⅲ lie 
lateral to the falciform ligament with Ⅱ superior to the portal venous supply and Ⅲ inferior. 
Segment Ⅳ lies medial to the falciform ligament and is subdivided into Ⅳa  (superior) and 
Ⅳb (inferior). Segments Ⅴ to Ⅷ make up the right part of the liver. Segment Ⅴ is the most 
medial and inferior. Segment Ⅵ is located more posteriorly. SegmentⅦ is located above 
segment Ⅵ. Segment Ⅷ sits above segment Ⅴ in the superior-medial position. Fig. 5(a) 
illustrates the segment method with an example and Fig. 5(b) is its 3D reconstruction display. 
In the figure, we use nine different colors to mark and label different liver segments.  

In the experiments, the dataset is randomly divided into three subsets. 75% of data is used 
for training, 10% of data is used for validation, and 15% of data is used for testing. In other 
words, the training set contains 45 cases, the validation set contains 5 cases, and the test set 
contains 9 cases. Considering that deep neural networks usually require large amount of 
training data, we slice 3D original data into 2D planes as samples. In the end, we have 2984 
training images, 398 validation images and 597 test images. This dataset is annotated with 9 
liver segment classes and one background class. 

4.2 Evaluation Metrics 
To evaluate the proposed method, we employ Dice, Sensitivity (Sens), and Positive 

Predicted Value (PPV) as the evaluation metrics, which are defined as formula 11-13 
respectively. 

    2
2

TPDice
TP FP FN

×
=

× + +
                                              (11) 

                                                 TPSensitivity
TP FN

=
+

                                                 (12) 

                                                      TPPPV
TP FP

=
+

                                                     (13)                                                                                                                

where TP, TN, FP, FN denote true positives, true negatives, false positives, and false negatives. 

4.3 Implementation Details 
We use ResUNet as the backbone network. Specifically, considering the limitation of the 

dataset scale, we adopt the improved ResUNet introduced by He et al. [35], which is simple 
but effective. A 2 × 2 average pooling layer is added to the shortcut connection prior to 
the 1 × 1 convolutional layer for the transitioning blocks with stride of two. This method can 
make up for the loss of feature information caused by the downsampling using stride 
convolution.  
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We employ a poly learning rate policy that the initial learning rate will be multiplied by 
0.1, if the dice metric on validation set does not reduce in 10 epochs. So that we can reduce 
the value of loss function as much as possible and make the training more thorough. The initial 
learning rate is set to 0.001 for all the methods used in experiments. The minimum learning 
rate is set to 0.00001. We employ Adam optimizer [36] and weight decay is set to 0.00004. 
Batchsize is set to 64. For data processing, the derived 2D data sliced from the 3D volumes 
are resized to 512 × 512 using bilinear interpolation. The pixel intensity is normalized to (0,1). 
We implement our method based on Pytorch. Two Nvidia GeForce GTX 1080ti GPUs are 
used to train our model several times to ensure the reliability of the results. For each time, the 
model will be trained 150 epochs to make the model fully converge. 

 

4.4 Ablation Study 
To verify the effectiveness of each module of BADA, we conduct ablation experiments 

addressing the performance of the boundary-aware dual attention mechanism and the 
symmetric U-shape network, respectively. 

4.4.1 Ablation Study for Attention Modules 
Boundary-aware dual attention can highlight significant parts of the feature maps that 

contribute most to segmentation from both the pixel and channel perspectives. To explore the 
impact of the two attention modules on the segmentation results, we adopt one attention 
scheme viz. the spatial attention module and the semantic attention module respectively to do 
the performance evaluation. The relative experiment results under the specific settings are 
shown in Table 1. 

Here, we employ two models U-Net and ResUNet as baselines. As shown in Table 1, 
attention module brings a significant improvement in the experimental results. Our proposed 
model with spatial attention module achieves results of 87.39%, 86.30%, and 89.19% on Mean 
Dice, Mean Sens, and Mean PPV, respectively. Simultaneously, the model that employs 
semantic attention module reaches results of 86.25%, 85.82%, 88.7% on those three metrics. 
Compared with the baselines, the model with spatial attention module improves about 7-9%, 
while the model with semantic attention module improves about 6-8%. This shows that the 
spatial attention module can play a more important role. 

With the gated attention modules aggregate the attention from the above two angles in 
the same model, the results improve further, reaching 89.01%, 87.71% and 90.67% on Mean 
Dice, Mean Sens and Mean PPV respectively. This demonstrates that the aggregated 
symmetrical gated attention module can make use of the information of the spatial dimension 
and the channel dimension and accordingly achieve a better segmentation effect. In other 
words, the spatial information reveals the local salient regions i.e. liver blood vessels and the 
semantic information reflects important feature expressions. Additionally, the attention 
modules employed at every resolution level are helpful to enhance the important features at 
different scales. Therefore, when the two modules are aggregated in the same network model, 
they can complement each other to foster the increasing of the segmentation accuracy. 
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Table 1. Ablation Study for Attention Module 
Method Mean Dice(%) Mean Sens(%) Mean PPV(%) 

Baseline(U-Net) [13] 79.70 77.56 83.25 
Baseline(ResUNet) [17] 85.14 85.71 87.14 

Our method (with only Spatial) 87.39 86.30 89.19 

Our method (with only Semantic) 86.25 85.82 88.79 

Our method (with dual attention) 89.01 87.71 90.67 

4.4.2 Ablation Study for Backbone Structure 
The ablation experiment on structure of the backbone network is to study performance of 

network in the symmetric or asymmetric structure. Here, we mainly explore the difference 
between the U-Net based symmetric model and the FCNs based asymmetric model in the liver 
segments segmentation task. The optional network structure has been introduced in section 
3.5, so this section mainly provides the experimental results and do the comparative analysis 
with some quantitative metrics and subjective visualization results. The comparative 
experiments conducted under different settings are shown in Table 2. 

The models in the first three rows are in asymmetric structure, and the model in the last 
row is the symmetric model we proposed. Since our proposed attention module is applied after 
every upsample operation, the similar attention modules used by the four models in this table 
is the same as the number of upsample operations they perform. As the results are shown in 
Table 2, the model with more upsample operations and more attention mechanisms get a better 
performance in segmentation. Compared with the FCN-based models (the first three rows) 
which commonly used for scene segmentation, our proposed symmetric model (the last row) 
improves segmentation performance by 7.67%, 4.05%, 1.99%, respectively. Furthermore, we 
visualize the corresponding segmentation results as shown in Fig. 6. It can be seen that 
although the asymmetric model can roughly segment the liver sections, but there exist obvious 
deficiencies in boundary recovery, and even mosaic edges appear. However, with increasing 
upsample times from 1 to 4 times as in Fig. 6, the grade of the mosaic edge phenomenon 
degrades. Obviously, the effect of image boundary recovery and positioning gets better as well. 
It can be discovered that using the symmetric U-net model with the feature map concatenating 
between the encoding path and the decoding path at the same resolution stage is beneficial to 
improve the accuracy and precision of liver segment segmentation with feature details added 
at the decoding path. Therefore, adopting the U-Net-based symmetric model as basis, which 
doing the concatenation of feature maps at every scale level, will strive to obtain better effect 
of positioning and boundary recovery. 

 
Table 2. Ablation Study for Backbone Network 

Method Mean Dice(%) Mean Sens(%) Mean PPV(%) 

Proposed(with 1 Upsample) 81.34 80.76 82.32 

Proposed(with 2 Upsample) 84.96 84.17 86.42 

Proposed(with 3 Upsample) 87.02 85.99 88.09 

Proposed(with 4 Upsample) 89.01 87.71 90.67 
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Fig. 6. Visualization results of symmetric and asymmetric model ablation experiments. 

4.5 Comparative Experiments 
To verify the performance of our proposed model, we conduct a comparative experiment 

with several methods on the liver segment dataset. For a fair comparison, we modify SE-
ResNet and DANet from FCN-based to U-Net-based. Since Dice is the main metric, we record 
the Dice of each liver segment in this comparison experiment. For the other two metrics, we 
only show their average values across all liver segments. Results are shown in Table 3 and 
Table 4. We can see that our method achieves the best performance among the comparative 
methods in all three metrics. Especially, our model outperforms SE-ResNet (Base on U-Net) 
[11] and DANet (Base on U-Net) [12] by a large margin. Analyzing the reason, we discover 
both these two methods use the self-attention mechanism. The experiment results show that 
self-attention does not exert an effective effect in the segmentation task of the liver segment, 
because it does not emphasize the boundary location information. In contrast, the gated 
attention mechanism in our method employs the fusion map of the high-level and the low-
level feature as the gated signal. The experimental result demonstrates the effectiveness of our 
method with the proposed boundary-aware attention mechanism to highlight important 
features of liver segment positions and boundaries. In view of the main metric Dice, our 
method achieves the best segmentation performance on 8 of the 9 liver segments and on Mean 
Dice. Besides, our model outperforms the second-best models 2.62%, 2.37%, 2.29% in Mean 
Dice, Mean Sens, Mean PPV, respectively, and reaches 89.01%, 87.71%, 90.67%. Also, our 
proposed model (with Spatial) in the ablation experiment and Attention ResUNet only differs 
in the feature fusion method, however it achieves a 1.68% improvement. This proves that our 
adopted channel dimension concatenation method can effectively maintain the spatial feature 
consistency.  

 
Table 3. Dice metric of per-class results of comparison study 

Method 
I 

(%) 
II 

(%) 
III 
(%) 

 

IVA 
(%) 

IVB 
(%) 

V 
(%) 

VI 
(%) 

VII 
(%) 

VIII 
(%) 

Mean
(%) 

U-Net 74.35 66.15 79.12 76.01 79.34 87.04 85.45 84.75 85.07 79.70 

U-Net++ 76.97 73.72 83.55 84.17 90.57 90.16 90.04 91.41 87.23 85.32 

ResUNet 79.30 77.64 83.44 86.19 79.94 91.13 89.69 90.72 91.84 85.54 

Attention  
U-Net 77.30 76.28 84.61 82.42 88.00 91.50 91.41 88.98 89.82 85.59 

Attention 
ResUNet 80.05 79.09 85.06 83.91 86.60 89.85 88.03 88.96 89.81 85.71 

SE+ResUNet 78.12 77.97 84.64 87.64 86.43 91.09 90.38 89.84 91.36 86.39 
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To have intuitive understanding of performance achieved in liver segment segmentation 

task, the comparative analysis with visualization results of the above experiments are done.  
Some segmentation results are shown in Fig. 7. It can be found that the segmentation results 
of our method are highly consistent with Ground Truth in terms of the region position and 
boundary. In contrast, there are some significant problems in the other five methods. As shown 
in second column in Fig. 7, the traditional U-Net has a poor performance on this task, where 
a number of obvious wrong segmentation errors in liver segment regions, and the inaccurate 
segmentation boundary comparing to that in Ground Truth. Attention U-Net and Attention 
ResUNet employ spatial gated attention method. As shown in third and fourth columns in Fig. 
7, their results are significantly better than that of U-Net in the positioning of liver segment 
boundaries. However, there are still wrong and missing segmentation regions. Analyzing the 
reasons, it is considered that the semantic information of the key regions is not prominent 
enough, which leads to the bias of judgment on the category. Comparing with that, our 
methods with additional region semantic attention achieves better performance at this point as 
shown in the last column. SE-ResUNet performs a channel self-attention mechanism. As 
shown in sixth column in Fig. 7, there exist some visible inconsistencies in the boundary region 
pixel class judgments. From this, we can tell using single self-attention mechanism is not 
enough for revealing region position and boundary information. Otherwise, DANet uses a dual 
self-attention mechanism and the parallel attention module, its results are shown in the fifth 
column in Fig. 7. However, it can still be found from the results in the second row that this 
dual self-attention mechanism does not reuse the boundary location information in the low-
level feature maps even if the category judgments are correct, which leads to poor boundary 
localization as well. This indicates that the self-attention mechanism by computing inter-pixel 
and inter-channel dependencies does not achieve as good results in the field of medical image 
segmentation as it does in the field of natural image segmentation. This may be because there 
are strong correlations between objects and objects in natural images, which is not the case in 
medical images. Comparing with others, BADA performs a boundary-aware dual attention 
processing with fused attention from paralleled spatial attention module and semantic attention 
module. Consequentially, our method can solve the problem of inaccurate positioning of liver 
segment boundaries and incorrect semantic category judgment in this task. The best results 
from visualization view have been obtained in the experiment.  
 

Table 4. Dice metric of per-class results of comparison study 

DA+ResUNet 79.47 80.49 85.73 86.24 88.01 89.75 88.06 88.35 89.98 86.23 

DANet 69.12 77.96 79.43 80.94 83.19 83.22 82.21 83.58 86.21 80.65 

Our method 80.49 83.80 86.84 89.48 91.89 92.39 91.49 91.58 87.23 89.01 

Method Backbone Mean Sens(%) Mean PPV(%) 

U-Net U-Net 77.56 83.25 

U-Net++ U-Net 84.17 88.65 

ResUNet ResNet 85.71 87.14 

Attention U-Net U-Net 84.28 88.10 
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Fig. 7. Examples of visualization of comparison experiment results on test set. 
 

 
Furthermore, to explore the prominence of our method for the boundary information and 

the location information of the region to be segmented, we visualize the heat map of the 
attention mechanism, the weighted feature map and the output of the intermediate layer of the 
network. We visualize the regions of interest of our method and some comparison methods for 
the same image by using Grad-Cam [37], and show them as heatmaps in Fig. 8. Here we only 
compare the two most classic and most widely used medical image segmentation methods U-
Net and Attention U-Net. As shown in the figure, the heatmap for U-Net without using the 
attention mechanism reflects no reasonable salient areas. In contrast, Attention U-Net and our 
method use the attention mechanism. The corresponding heatmaps of both methods reveal that 
prominent areas are weighted with high attention especially that around the liver contour. In 
addition, our method achieves the expected result with highlighting the possible boundaries 
like the two blood vessels depicted with the white boxes in heatmap of our method as in Fig. 
8.  

Attention ResUNet ResNet 84.78 87.72 

SE+ResUNet ResNet 85.34 88.38 

DA+ResUNet ResNet 85.25 88.05 

DANet ResNet 79.80 82.14 

Our method ResNet 87.71 90.67 
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Fig. 8. Examples of visualization of heatmaps on test set. 

Fig. 9. Examples of visualization of the feature maps after attention weighting.  
 

To have idea of gradually improving results of segmentation, the feature maps after dual 
attention weighting and the intermediate layer prediction results at the decoding path are 
shown in Fig. 9 and Fig. 10, respectively. The first row and the second row display the 
corresponding results at the fourth layer (after 4 times upsample) and the third layer (after 3 
times upsample) respectively in Fig. 9 and Fig. 10. As shown in Fig. 9, we can tell that feature 
obtained from U-Net without any attention mechanism can hardly distinguish the liver 
segments with similar representation of all segments. Comparing with it, features from 
Attention U-Net capturing the relative boundary clues between the liver segments, but it is still 
not very distinguishable with obvious different expression. The fourth and fifth columns of the 
figure show the weighting effect with spatial attention and semantic attention alone in our 
method, respectively. We can clearly see that the spatial attention branch distinguishes the 
liver segments well, making the boundaries between liver segments clear and distinct. The 
semantic attention branch has a clear and prominent representation of the liver region and the 
blood vessels used to segment the liver segments. The weighted feature maps after the dual 
attention fusion at the last column combines the advantages of the above, which show clearly 
distinguishable feature varieties among the liver segments and obvious boundaries between 
segments. In addition, the boundary between liver and its surroundings presents better 
distinguishable attribution with a kind of highlighted pixels along the liver contour. Therefore, 
from the perspective of feature map visualization, it can be seen that our method has learned 
more discriminative representation and facilitates the liver segment segmentation with 
accurate boundary positions. In Fig. 10, it is not difficult to see that even in the output of the 
intermediate layers of the network, the feature map using boundary-aware dual attention is 
significantly clearer in boundary recovery and liver segments position than the feature map 
using other methods. Similarly, as the feature maps in Fig. 9, the output of the intermediate 
layer of U-Net can hardly tell the liver segment with only the same feature of the entire liver 
area reflecting at the intermedia layer. Attention U-Net with using the gated attention 
mechanism achieves a significant improvement in the recovery of liver segment boundaries, 
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but there still exists some obvious errors. Specifically, the upper boundary of the liver is not 
recovered clearly. Comparatively, our method achieves intuitively highest positioning 
accuracy and vivid liver segment boundaries.  

In summary, both qualitative and quantitative experiments demonstrate that our proposed 
BADA play effective roles in liver segment segmentation and achieves the better performance 
than several baselines and state-of-art segmentation methods 

4.6 Discussion of Limitation 
To make the proposed BADA method more practical, there are still some works worth to 

be addressed in the future to overcome some limitations in the current method, which mainly 
from two aspects.  

The first is the limitation of the method. We find in the experiment results as shown in 
Fig. 8, that some boundaries in the non-interest region are enhanced together with the 
boundaries of the liver segment. Analyzing the reason, it is because that our boundary-aware 
attention mechanism enhances candidate boundaries where the pixel intensity changes 
significantly, rather than focusing solely on specific liver segment boundaries. However, this 
limitation does not bring a significant negative affection on the current experimental results. 
Our method can still accurately learn the discriminative feature as shown in Fig. 9 and Fig. 10. 
This is because the constraint of segmentation masks on the location of liver segments, which 
can guide the network model to distinguish the boundaries of liver segments and the 
boundaries of the non-interest region to some extent. Under the joint effect of our proposed 
dual attention and the empirical risk minimization, the overall segmentation performance is 
improved and achieves the best result. In spite of this, we realize that exploring more advanced 
and reasonable methods to distinguish the boundary type is worthy to research in the future. 
Therefore, in the follow-up research, we will focus on this issue to find the possible solution 
taking account of the context attention mechanism between focal and neighboring areas and 
cross-modality attention mechanism to making use of association relationship among multi-
modal MRIs.  

The second is the data limitation. Our current experiment is finished on the clinic dataset 
with only 59 cases. Current experiment results demonstrate the effectiveness of our proposed 
method. However, to prove the generalization and performance of proposed methods, we will 
continue to collect and label the additional cases to expand the dataset capacity in the future.  

 
Fig. 10. Examples of visualization of intermediate layer results 
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5. Conclusion 
In this paper, we have presented a Boundary-Aware Dual Attention Guided U-Net for 

liver segment segmentation, which fuses the low-level and high-level feature maps at the 
encoding and decoding path of U-Net. The fused feature map is regarded as the gated signal 
to calculate the attention-weighted the feature map to highlight key areas and suppress 
irrelevant areas. Specifically, our proposed boundary-aware dual attention module is 
composed of the spatial attention module and the semantic attention module in a parallel way, 
so as to calculate the attention weights from both spatial and semantic aspects to enhance 
boundary-related information. We conduct comprehensive comparative and ablate 
experiments to evaluate the performance of our approach. Experimental results show that 
BADA outperforms several baselines and state-of-the-art segmentation approaches. The 
visualization analysis demonstrate that discriminative features are learned with reflecting 
segment region and boundary information using two aspects attention weighting, where the 
spatial attention highlights the boundary and the semantic attention enhances the feature 
representation of the liver segment region and the liver blood vessel position. In all, the overall 
segmentation performance is improved with our proposed BADA guided mechanism. In the 
future, we will investigate how to incorporate context correlation information between liver 
segments to distinguish between liver segment boundaries and non-interest region boundaries. 
Moreover, we will do the further research of segmentation methods with making full use of 
multi-modal MRIs instead of using vein sequence MRI only. More complementary 
information among clinical MRI modalities can be considered in boundary attention 
calculating to improve the accuracy of segmentation. 

Acknowledgement 
This work is partly supported by National Natural Science Foundation of China 

(No.61871276, 82071876, 62171298), Beijing Natural Science Foundation (No.4202004, 
7184199), Capital's Funds for Health Improvement and Research (No.2018-2-2023), National 
Key Research and Development Program of China (2016YFC0106900, 2019YFE0107800) 
and the National Research Foundation of Korea (NRF-2019K1A3A1A20093097). 

References 
[1] F. Sutherland, J. Harris, “Claude couinaud: a passion for the liver,” Archives of surgery, vol. 137, 

no. 11, pp. 1305-1310, 2002. Article (CrossRef Link) 
[2] M. Lafortune, F. Madore, H. Patriquin, G. Breton, “Segmental anatomy of the liver: a sonographic 

approach to the couinaud nomenclature,” Radiology, vol. 181, no. 2, pp. 443-448, 1991.  
Article (CrossRef Link). 

[3] R. Beichel, T. Pock, C. Janko, R. B. Zotter, B. Reitinger, A. Bornik, K. Palagyi, E. Sorantin, G. 
Werkgartner, H. Bischof, et al., “Liver segment approximation in ct data for surgical resection 
planning,” in Medical Imaging 2004: Image Processing, San Diego, California, United States, 
2004, pp. 1435-1446. Article (CrossRef Link) 

[4] X. Yang, J. Do Yang, H. P. Hwang, H. C. Yu, S. Ahn, B.-W. Kim, H. You, “Segmentation of liver 
and vessels from CT images and classification of liver segments for preoperative liver surgical 
planning in living donor liver transplantation,” Computer methods and programs in biomedicine, 
vol. 158, pp. 41-52, 2018. Article (CrossRef Link) 

 

https://doi.org/10.1001/archsurg.137.11.1305
https://doi.org/10.1148/radiology.181.2.1924786
http://doi.org/doi:10.1117/12.535514
https://doi.org/doi:10.1016/j.cmpb.2017.12.008


34                                                 Jia et al.: Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model 

[5] D. Selle, B. Preim, A. Schenk, H.-O. Peitgen, “Analysis of vasculature for liver surgical planning,” 
IEEE transactions on medical imaging, vol. 21, no. 11, pp. 1344-1357, 2002.  
Article (CrossRef Link) 

[6] A. Sinha, J. Dolz, “Multi-scale self-guided attention for medical image segmentation,” IEEE 
Journal of Biomedical and Health Informatics, vol. 25, no. 1, pp. 121-130, 2021.  
Article (CrossRef Link) 

[7] Cai J, Xia Y, Yang D, et al., “End-to-end adversarial shape learning for abdomen organ deep 
segmentation,” in Proc. of International Workshop on Machine Learning in Medical Imaging, 
Shenzhen, China, pp. 124-132, 2019. Article (CrossRef Link) 

[8] Liu Q, Chen C, Qin J, et al., “FedDG: Federated domain generalization on medical image 
segmentation via episodic learning in continuous frequency space,” in Proc. of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 1013-1023, 2021. 

[9] G. Noyel, C. Vartin, P. Boyle, L. Kodjikian, “Retinal vessel segmentation by probing adaptive to 
lighting variations,” in Proc. of 2020 IEEE 17th International Symposium on Biomedical Imaging 
(ISBI), Iowa City, United States, pp. 1246-1249, 2020. Article (CrossRef Link) 

[10] Y. Liu, X. Jia, Z. Yang, D. Yang, “Style consistency constrained fusion feature learning for liver 
tumor segmentation,” in Proc. of Chinese Conference on Pattern Recognition and Computer 
Vision (PRCV), Xi’an, China, pp. 390-396, 2019. Article (CrossRef Link) 

[11] Zhang Y, Peng C, Peng L, et al., “Multi-phase Liver Tumor Segmentation with Spatial 
Aggregation and Uncertain Region Inpainting,” in Proc. of International Conference on Medical 
Image Computing and Computer-Assisted Intervention, Strasbourg, France, pp. 68-77, 2021. 
Article (CrossRef Link) 

[12] Y. Chen, P. Sun, “The research and practice of medical image enhancement and 3d reconstruction 
system,” in Proc. of 2017 International Conference on Robots & Intelligent System (ICRIS), 
Huai’an, China, pp. 350-353, 2017. Article (CrossRef Link) 

[13] M. Moradi, P. Abolmaesumi, D. R. Siemens, E. E. Sauerbrei, A. H. Boag, P. Mousavi, 
“Augmenting detection of prostate cancer in transrectal ultrasound images using svm and rf time 
series,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 9, pp. 2214-2224, 2009. 
Article (CrossRef Link) 

[14] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang, “Residual attention 
network for image classication,” in Proc. of the IEEE conference on computer vision and pattern 
recognition, Honolulu, Hawaii, United States, pp. 3156-3164, 2017. Article (CrossRef Link) 

[15] X. Wang, R. Girshick, A. Gupta, K. He, “Non-local neural networks,” in Proc. of the IEEE 
conference on computer vision and pattern recognition, Salt Lake City, Utah, United States, pp. 
7794-7803, 2018. Article (CrossRef Link) 

[16] J. Hu, L. Shen, G. Sun, “Squeeze-and-excitation networks,” in Proc. of the IEEE conference on 
computer vision and pattern recognition, Salt Lake City, Utah, United States, pp. 7132-7141, 2018. 
Article (CrossRef Link) 

[17] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, “Dual attention network for scene 
segmentation,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 
Long Beach, California, United States, pp. 3146-3154, 2019. Article (CrossRef Link) 

[18] O. Ronneberger, P. Fischer, T. Brox, “U-net: Convolutional networks for biomedical image 
segmentation,” in Proc. of International Conference on Medical image computing and computer-
assisted intervention, Munich, Germany, pp. 234-241, 2015. Article (CrossRef Link) 

[19] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. Ronneberger, “3d u-net: learning dense 
volumetric segmentation from sparse annotation,” in Proc. of International conference on medical 
image computing and computerassisted intervention, Athens, Greece, pp. 424-432, 2016.  
Article (CrossRef Link) 

[20] V. Iglovikov, A. Shvets, “Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for 
image segmentation,” arXiv preprint arXiv:1801.05746, 2018. 

[21] N. Ibtehaz, M. S. Rahman, “Multiresunet: Rethinking the u-net architecture for multimodal 
biomedical image segmentation,” Neural Networks, vol. 121, pp. 74-87, 2020.  
Article (CrossRef Link) 

http://doi.org/doi:10.1109/TMI.2002.801166
http://doi.org/doi:10.1109/JBHI.2020.2986926
https://doi.org/10.1007/978-3-030-32692-0_15
http://doi.org/doi:10.1109/ISBI45749.2020.9098332
http://doi.org/doi:10.1007/978-3-030-31726-3_33
https://doi.org/doi:10.1007/978-3-030-87193-2_7
https://doi.org/10.1109/ICRIS.2017.94
https://doi.org/10.1109/TBME.2008.2009766
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2018.00813
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2019.00326
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/doi:10.1016/j.neunet.2019.08.025


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022                                35 

[22] Z. Zhang, Q. Liu, Y. Wang, “Road extraction by deep residual u-net,” IEEE Geoscience and 
Remote Sensing Letters, vol. 15, no. 5, pp. 749-753, 2018. Article (CrossRef Link) 

[23] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, P.-A. Heng, “H-denseunet: hybrid densely connected 
unet for liver and tumor segmentation from ct volumes,” IEEE transactions on medical imaging, 
vol. 37, no. 12, pp. 2663-2674, 2018. Article (CrossRef Link) 

[24] D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. De Lange, P. Halvorsen, H. D. Johansen, 
“Resunet++: An advanced architecture for medical image segmentation,” in Proc. of 2019 IEEE 
International Symposium on Multimedia (ISM), Taichung, China, pp. 225-2255, 2019.  
Article (CrossRef Link) 

[25] K.-L. Tseng, Y.-L. Lin, W. Hsu, C.-Y. Huang, “Joint sequence learning and cross-modality 
convolution for 3d biomedical segmentation,” in Proc. of the IEEE conference on Computer Vision 
and Pattern Recognition, Honolulu, Hawaii, United States, pp. 6393-6400, 2017.  
Article (CrossRef Link) 

[26] X. Jia, Y. Liu, Z. Yang, D. Yang, “Multi-modality self-attention aware deep network for 3d 
biomedical segmentation,” BMC Medical Informatics and Decision Making, vol. 20, no. 3, pp. 1-
7, 2020. Article (CrossRef Link) 

[27] X. Wang, S. Han, Y. Chen, D. Gao, N. Vasconcelos, “Volumetric attention for 3d medical image 
segmentation and detection,” in Proc. of International Conference on Medical Image Computing 
and Computer-Assisted Intervention, Springer, Shenzhen, China, pp. 175-184, 2019.  
Article (CrossRef Link) 

[28] J. Zhang, Z. Jiang, J. Dong, Y. Hou, B. Liu, “Attention gate resu-net for automatic mri brain tumor 
segmentation,” IEEE Access, vol. 8, pp. 58533-58545, 2020. Article (CrossRef Link) 

[29] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, 
N. Y. Hammerla, B. Kainz, et al., “Attention u-net: Learning where to look for the pancreas,” 
arXiv preprint arXiv:1804.03999, 2018. 

[30] Z. Zhang, H. Fu, H. Dai, J. Shen, Y. Pang, L. Shao, “Et-net: A generic edge-attention guidance 
network for medical image segmentation,” in Proc. of International Conference on Medical Image 
Computing and Computer-Assisted Intervention, Shenzhen, China, pp. 442-450, 2019.  
Article (CrossRef Link) 

[31] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, Y. Zhou, “Transunet: 
Transformers make strong encoders for medical image segmentation,” arXiv preprint 
arXiv:2102.04306, 2021. 

[32] Li S, Zhang C, He X, “Shape-aware semi-supervised 3d semantic segmentation for medical 
images,” in Proc. of International Conference on Medical Image Computing and Computer 
Assisted Intervention, Lima, Peru, pp. 552-561, 2020. Article (CrossRef Link) 

[33] A. Chartsias, G. Papanastasiou, C. Wang, S. Semple, D. Newby, R. Dharmakumar, S. Tsaftaris, 
“Disentangle, align and fuse for multimodal and semi-supervised image segmentation,” IEEE 
Transactions on Medical Imaging, vol. 40, no. 3, pp. 781-792, 2021. Article (CrossRef Link) 

[34] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,” in Proc. of the 
IEEE conference on computer vision and pattern recognition, Las Vegas, United States, pp. 770-
778, 2016. Article (CrossRef Link) 

[35] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, M. Li, “Bag of tricks for image classification with 
convolutional neural networks,” in Proc. of the IEEE Conference on Computer Vision and Pattern 
Recognition, Long Beach, California, United States, pp. 558-567, 2019. Article (CrossRef Link) 

[36]  D. P. Kingma, J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint 
arXiv:1412.6980, 2014. 

[37] Selvaraju R R, Cogswell M, Das A, et al., “Grad-cam: Visual explanations from deep networks 
via gradient-based localization,” International Journal of Computer Vision, vol. 128, pp. 336-359, 
2020. Article (CrossRef Link) 

 
 
 

http://doi.org/doi:10.1109/LGRS.2018.2802944
https://doi.org/10.1109/TMI.2018.2845918
http://doi.org/doi:10.1109/ISM46123.2019.00049
https://doi.org/10.1109/CVPR.2017.398
https://doi.org/10.1186/s12911-020-1109-0
https://doi.org/10.1007/978-3-030-32226-7_20
https://doi.org/10.1109/ACCESS.2020.2983075
http://doi.org/doi:10.1007/978-3-030-32239-7_49
https://doi.org/10.1007/978-3-030-59710-8_54
http://doi.org/doi:10.1109/TMI.2020.3036584
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2019.00065
https://doi.org/10.1007/s11263-019-01228-7


36                                                 Jia et al.: Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model 

Xibin Jia received the B.S. degree in wireless technology from Chongqing University, 
Chongqing, China in 1991, received the M.S. degree in intelligent instrument from North 
China Institute of Technology in 1996 and the Ph.D. degree in computer science and 
technology from Beijing University of Technology, Beijing, China, in 2007. Now, she is a 
Professor in the Faculty of Information at the Beijing University of Technology (BJUT) in 
Beijing, China. 
 
 
 

 
Chen Qian received the B.S. degree in Beijing University of Technology, Beijing, China in 
2019. He is currently pursuing a master degree at Beijing University of Technology (BJUT), 
Beijing, China. His current research interests include computer vision and biomedical image 
segmentation. 
 
 
 
 
 

 
Zhenghan Yang is a chief physician and professor of radiology at Beijing Friendship 
Hospital Affiliated to Capital Medical University. He received Ph.D. degree in Beijing 
Medical University, Beijing, China in 1999. His current main research interests include 
imaging diagnosis of abdominal diseases, early imaging diagnosis of hepatocellular 
carcinoma. 
 
 
 
 

 
Hui Xu received the Ph.D degree from Peking University Third Hospital. He is currently 
the attending physician in the Radiology Department of Beijing Friendship Hospital 
Affiliated to Capital Medical University. His current research interest include the deep 
learning in liver disease diagnosis. 
 
 
 
 
 

 
Xianjun Han is a currently pursuing her Ph.D and graduated with a master’s degree from 
Beijing Friendship Hospital Affiliated to Capital Medical University. Research interests: 
Artificial Intelligence and cardiothoracic imaging diagnostics. 
 
 
 
 
 
 

 
Hao Ren is a Ph.D. candidate at Capital Medical University in Beijing, China, and has 
obtained a master’s degree from Tai’an Medical College, Tai’an, China. His current research 
interests include deep learning in diffuse liver disease diagnosis. 
 
 
 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 1, January 2022                                37 

 
Xinru Wu received the B.S.degree from Capital Medical University, Beijing, China and is 
a currently pursuing her M.S.degree from Beijing Friendship Hospital Affiliated to Capital 
Medical University, Beijing, China. 
 
 
 
 
 
 

 
Boyang Ma graduated from North China Coal Medicine School, she is currently pursuing 
for a master’s degree in medical imaging from Capital Medical University and has 9 years of 
work experience in radiology. 
 
 
 
 
 
 

 
Dawei Yang received the B.S.degree from China Medical university, Shenyang, China and 
M.S.degree from Beijing Hospital, Ministry of Health Beijing, China. His current research 
interest include the deep learning in liver disease diagnosis. 
 
 
 
 
 
 

 
Min Hong is a professor of Department of Computer Software Engineering at 
Soonchunhyang University. He received his B.S. from Soonchunhyang University, M.S. from 
University of Colorado at Boulder, and Ph.D. received from University of Colorado at Denver 
and Health Sciences Center in 1995, 2001, and 2005 respectively. His research interests are 
in computer graphics, physically-based modeling and simulation, bioinformatics, and image 
processing related applications. Currently he is the Director of Computer Graphics 
Laboratory. 


