• Title/Summary/Keyword: Attached cement paste

Search Result 13, Processing Time 0.019 seconds

Performance of Cement Paste Incorporating Oxidized MWCNT after Nitro-Sulfuric Acid treatment (질산 처리 후 산화된 MWCNT를 혼입한 시멘트 페이스트의 성능)

  • Tugelbayev, Aidyn;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.243-244
    • /
    • 2022
  • Recently, the utilization of carbon nanotubes (CNT) in cement paste has been widely investigated in terms of improving the dispersion quality and enhancing the cement paste mechanical performance. While methods of functionalizing the CNT using surfactants to disperse the nanoparticles have been studied to some extent, the literature on the effects of chemical covalent functionalization is still scarce. This work focuses on chemical functionalization of multiwall carbon nanotubes (MWCNT) using acid treatment, and a consequent addition of the modified MWCNT to the cement paste. The microstructural observation and degree of the MWCNT functionalization are examined using FE-SEM. The compressive strength is measured at an age of 28 days. The results of the study suggest that the acid-functionalized MWCNT are dispersed better compared to the pristine MWCNT due to presence of functional groups. The better dispersion of the nanotubes and the attached functional groups may contribute to the refinement of the microstructure of the cement paste and hence, increase its mechanical strength.

  • PDF

Carbonation Mechanism of Hydrated Cement Paste by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 시멘트 페이스트의 중성화 반응 메커니즘)

  • Park, Jeong-Won;Kim, Ji-Hyun;Lee, Min-Hee;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, needs for utilization of recycled aggregate have been increasing. However, its utilization has been limited due to its high alkalinity, which mostly came from the unremoved cement paste particles that were attached at the surface of recycled aggregate. Various efforts has been made to reduce its alkalinity by using $CO_2$, but currently available methods that uses $CO_2$ generate the problem with pH recovery. Considering the fact that supercritical $CO_2$ ($scCO_2$) can provide more rapid carbonation of cement paste than by normal $CO_2$, $scCO_2$ was utilized in this work. The reaction between $scCO_2$ and hydrated cement paste has been systematically evaluated. According to the results, it was found that powder type showed higher carbonation compared to that of cube specimens. It seems the carbonation by $scCO_2$ has occurred only at the surface of the specimen, and therefore still showed some amount of $Ca(OH)_2$ calcium aluminates after reaction with $scCO_2$. With powder type specimen, all $Ca(OH)_2$ was converted into $CaCO_3$. Moreover, additional calcium that came from both calcium aluminate hydrates and calcium silicate hydrates reacted with $scCO_2$ to form $CaCO_3$. After carbonation with $scCO_2$, the powder type specimen did not show pH recovery, but cube specimens did show due to the presence of portlandite.

Optimal Abrasion Conditions for Separating Aggregate and Cement paste for Using Waste Concrete Fine Powder as Decarbonization Raw Material (폐콘크리트 미분말을 탈탄산 원료로 사용하기 위한 골재와 시멘트페이스트 분리의 최적 마쇄 조건 분석)

  • Ha-Seog Kim;Min-Chul Lee
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • In this study, we attempted to reduce CO2 generated during manufacturing by replacing limestone (CaCO3), a carbonate mineral used to produce cement clinker, with a decarbonated raw material to which CO2 is not bound. The raw material for decarbonization was cement paste attached to waste concrete, among various industrial by-products. Waste concrete has cement paste adhered to the aggregate, which cannot be separated efficiently by general crushing and grinding methods. Peeling and grinding methods effectively remove only the cement paste without damaging the original aggregate. The abrasion time, steel ball type, and steel ball ratio were selected as effective factors for Abrasion. An optimal abrasion experiment was conducted to produce waste concrete fine powder containing decarbonated CaO as a cement clinker raw material through an experimental design method. The experiment revealed that the optimal conditions for producing waste concrete fine powder were an abrasion time of 7 minutes, a steel ball size for pulverization of 8 mm, and a steel ball ratio for pulverization of 0.6.

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

Concrete Recycling considering Risk Evaluation of Impurities in Recycled Aggregate (순환골재 불순물의 위험성을 고려한 콘크리트 리사이클링)

  • Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.95-97
    • /
    • 2012
  • Recycled aggregate (RA) produced from demolished concrete waste can bring about several problems on concrete performance, when it is used as aggregate for new concrete. Because RA generally has lower quality than natural aggregate due to the residual cement paste attached on RA and various impurities. It is also very difficult to ensure that the quality of RA remains consistent, because generally RA is produced variously. Thus, in concrete recycling, it is extremely important to estimate the risk of the impurities which could affect performances of recycled aggregate concrete (RAC) focusing on the material flow of concrete waste and its recycling. This study suggests an evaluation result to expect the possibility of impurity mixing in RA production procedure. and suggests a risk evaluation model to expect the changes of RAC performances based on conventional data in Japan.

  • PDF

Pore Structure and Physical Properties of Heterogeneous Bonding Materials of Recycled Aggregate according to Carbonation Reforming (순환 골재 부착 이질재의 탄산화 개질에 따른 공극구조 및 물리적 특성)

  • Shin, Jin-Hak;Kim, Han-Sic;Chung, Lan;Ha, Jung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • At present, about 40 million tons of concrete is dismantled each year, which accounts for the largest portion of the total amount of construction waste with 60.8%. It is known about 97.5% of it is recycled. However, most of the usage of waste concrete is limited to lower value-added business areas, and considering the increasing amount of waste concrete generated due to the deterioration of structures, the need for converting waste concrete to structural concrete is urgent. Therefore, this study aims at estimating the period for the optimum carbonation reforming to improve the quality of recycled aggregate, by making use of the method of accelerated carbonation reforming of the bonding heterogeneous (cement paste and mortar) for the purpose of converting recycled aggregate to structural concrete. Based on the period appropriate for the heterogeneous thickness and each bonding thickness of recycled aggregate which was drawn from previous studies, the changes in the characteristics and physical properties of pore structure according to progress of accelerated carbonation were analyzed. The result shows that with the progress of carbonation, the pore volume and the percentage of water absorption of the bonding heterogeneous decreased and the density increased, which indicates improvement of the product quality. But after certain age, the tendency was reversed and the product quality deteriorated. Synthesizing the results of previous studies and those of the present study, this study proposed 4 days and 14 days respectively for the period for the optimum carbonation reforming of recycled fine aggregate and recycled coarse aggregate.

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Effect of Spray and Immersion Treatment of Mono-Ammonium Phosphate Solution on Properties of Recycled Fine Aggregate (일인산 암모늄 수용액 분사 및 침지처리가 순환잔골재의 물성 변화에 미치는 영향)

  • Seong-Jun Kwon;Seong-Ho Kim;Chan-Woo Park;Chul-Woo Chung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.314-321
    • /
    • 2024
  • Due to the depletion of natural aggregate resources, the use of recycled aggregates became an urgent issue. Microcracks generated during production of recycled aggregate and cement paste attached to the surface of aggregate have been the biggest obstacles to promote the use of recycled aggregate. To alleviate such problem, this study attempted the spray and immersion treatment of recycled fine aggregate using mono-ammonium phosphate solution, which is known to be effective for reducing the pH of recycled aggregate. The changes in physical properties before and after treatment were observed, and the compressive strength of mortar specimen was evaluated. According to the experimental results, the absorption capacity of the recycled fine aggregate increased with reduction in pH after mono-ammunium phosphate treatment. Calcium hydroxide and ettringite was removed, and skeletal density of recycled fine aggregate increased due to the formation of hydroxyapatite. Despite the increase in absorption capacity, the compressive strength of the mortar increased and it seems to be associated with the increase in adhesion strength at the interface between cement paste and recycled fine aggregate. When the concentration of ammonium monophosphate aqueous solution was excessive (immersion: 15% and 20%, spraying 20%), the compressive strength of the mortar decreased, which seemed to be related to the increase in the absorption capacity caused by the the excessive dissolution of the hydration products such as portlandite and ettringite.