• Title/Summary/Keyword: Atomic parameters

Search Result 825, Processing Time 0.027 seconds

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Characterization of NiO Films with the Process Variables in the RF-Sputtering (스퍼터링 공정변수 변화에 따른 NiO 박막의 특성 평가)

  • Chung, Kook Chae;Kim, Young Kuk;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.320-325
    • /
    • 2010
  • NiO thin films were deposited by radio frequency magnetron sputtering on glass substrates. The processing variables of the oxygen content, sputtering power, and pressure were varied to investigate the electrical properties and surface morphology of NiO films. It was found that the resistivity of NiO films at $1.22{\times}10^2{\Omega}cm$ (2.5% $O_2$ in Ar gas) was greatly reduced to$ 2.01{\times}10^{-1}$ ${\Omega}cm$ (100% oxygen) under a typical sputtering condition of 6 mTorr and 200 watts. In an effort to observe the resistivity variances, the sputtering power was varied from 80 to 200 watts at 6 mTorr with 100% $O_2$. However, the resistivity of the NiO films changed in the range of $10^{-1}-10^{-2}$ ${\Omega}cm$. The dependence on the sputtering power was therefore found to be weak in this experiment. When the sputtering pressure was changed from 3 to 60 mTorr at 200 watts with 100% $O_2$, the resistivity of the NiO films showed the lowest value of $5.8{\times}10^{-3}$ ${\Omega}cm$ at 3 mTorr, which is close to that of commercial ITO films (${\sim}10^{-4}$ ${\Omega}cm$). As the sputtering pressure increased, the resistivity also increased to 4.67 cm at 60 mTorr. The surface morphology of the NiO films was also checked by Atomic Force Microscopy. It was found that the RMS surface roughness values ranged from 0.6 to 1.5 nm and thtthe dependence on the sputtering parameters was weak.

Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique (LPCVD로 형성된 실리콘 나노점의 전계방출 특성)

  • An, Seungman;Yim, Taekyung;Lee, Kyungsu;Kim, Jeongho;Kim, Eunkyeom;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Synthesis of Novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications

  • Arshad, Javeria;Janjua, Naveed Kausar;Raza, Rizwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.112-125
    • /
    • 2021
  • The new emerging "High entropy materials" attract the attention of the scientific society because of their simpler structure and spectacular applications in many fields. A novel nanocrystalline high entropy (Be,Mg,Ca,Sr,Zn,Ni)3O4 oxide has been successfully synthesized through mechanochemical treatment followed by sintering and air quenching. The present research work focuses on the possibility of single-phase formation in the aforementioned high entropy oxide despite the great difference in the atomic sizes of reactant alkaline earth and 3d transition metal oxides. Structural properties of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide were explored by confirmation of its single-phase Fd-3m spinel structure by x-ray diffraction (XRD). Further, nanocrystalline nature and morphology were analyzed by scanning electron microscopy (SEM). Among thermal properties, thermogravimetric analysis (TGA) revealed that the (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is thermally stable up to a temperature of 1200℃. Whereas phase evolution in (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide before and after sintering was analyzed through differential scanning calorimetry (DSC). Electrochemical studies of (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide consists of a comparison of thermodynamic and kinetic parameters of water and hydrazine hydrate oxidation. Values of activation energy for water oxidation (9.31 kJ mol-1) and hydrazine hydrate oxidation (13.93 kJ mol-1) reveal that (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide is catalytically more active towards water oxidation as compared to that of hydrazine hydrate oxidation. Electrochemical impedance spectroscopy is also performed to get insight into the kinetics of both types of reactions.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2-MoO3-V2O5 glass system

  • Y. Al-Hadeethi ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1218-1224
    • /
    • 2023
  • We investigated the radiation shielding competence for TeO2-V2O5-MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energies, this change is more apparent. At low energy, the present samples have an effective atomic number (Zeff) that is relatively high (in order of 16.17-24.48 at 0.347 MeV). In addition, the findings demonstrated that the density of the samples is a very critical factor in determining the half value layer (HVL). The minimal HVL for each sample can be found at 0.347 MeV and corresponds to 1.776, 1.519, 1.391, 1.210 and 1.167 cm for Te1 to Te5 respectively. However, the highest HVL of these glasses is recorded at 1.33 MeV, which corresponds to 3.773, 3.365, 3.218, 2.925 and 2.908 cm respectively. The tenth value layer results indicate that the thickness of the specimens needs to be increased in order to shield the photons that have a greater energy. Also, the TVL results demonstrated that the sample with the greatest TeO2 and MoO3 concentration has a higher capacity to attenuate photons.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.