• 제목/요약/키워드: Atmospheric physics

검색결과 278건 처리시간 0.028초

SELF-SIMILAR SOLUTIONS OF ADVECTION-DOMINATED ACCRETION FLOWS REVISITED

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권2호
    • /
    • pp.139-146
    • /
    • 2005
  • A model of advection-dominated accretion flows has been highlighted in the last decade. Most of calculations are based on self-similar solutions of equations governing the accreting flows. We revisit self-similar solutions of the simplest form of advection-dominated accretion flows. We explore the parameter space thoroughly and seek another category of self-similar solutions. In this study we allow the parameter f less than zero, which denotes the fraction of energy transported through advection. We have found followings: 1. For f > 0, in real ADAF solutions the ratio of specific heats ${\gamma}$ satisfies 1 < ${\gamma}$ < 5/3 for O ${\leq}$ f ${\leq}$ 1. On the other hands, in wind solutions a rotating disk does not exist. 2. For f < 0, in real ADAF solutions with ${\epsilon}$ greater than zero ${\gamma}$ requires rather exotic range, that is, ${\gamma}$ < 1 or ${\gamma}$ > 5/3. When -5/2 < ${\epsilon}$' < 0, however, allowable ${\gamma}$ can be found in ${\gamma}$ < 5/3, in which case 4{\Omega}_0$,_ is imaginary. 3. For a negative $u_0$,+ with f > 0, solutions are only allowed with exotic ${\gamma}$, that is, 1 < ${\gamma}$ or ${\gamma}$ > (5f/2-5/3)/(5f/2-1)when O < f < 2/5, (5f/2-5/3)/(5f/2-1) < ${\gamma}$ < 1 when f > 2/5. Since ${\epsilon}$' is negative, 4{\Omega}_0$,+ is again an imaginary quantity. For a negative $u_0$,+ with f < 0, ${\gamma}$ is allowed in 1 < 7 < (5|f|/2 + 5/3)/(5|f|/2 + 1). We briefly discuss physical implications of what we have found.

ESTIMATION OF ERRORS IN THE TRANSVERSE VELOCITY VECTORS DETERMINED FROM HINODE/SOT MAGNETOGRAMS USING THE NAVE TECHNIQUE

  • Chae, Jong-Chul;Moon, Yong-Jae
    • 천문학회지
    • /
    • 제42권3호
    • /
    • pp.61-69
    • /
    • 2009
  • Transverse velocity vectors can be determined from a pair of images successively taken with a time interval using an optical flow technique. We have tested the performance of the new technique called NAVE (non-linear affine velocity estimator) recently implemented by Chae & Sakurai using real image data taken by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite. We have developed two methods of estimating the errors in the determination of velocity vectors, one resulting from the non-linear fitting ${\sigma}_{\upsilon}$ and the other ${\epsilon}_u$ resulting from the statistics of the determined velocity vectors. The real error is expected to be somewhere between ${\sigma}_{\upsilon}$ and ${\epsilon}_u$. We have investigated the dependence of the determined velocity vectors and their errors on the different parameters such as the critical speed for the subsonic filtering, the width of the localizing window, the time interval between two successive images, and the signal-to-noise ratio of the feature. With the choice of $v_{crit}$ = 2 pixel/step for the subsonic filtering, and the window FWHM of 16 pixels, and the time interval of one step (2 minutes), we find that the errors of velocity vectors determined using the NAVE range from around 0.04 pixel/step in high signal-to-noise ratio features (S/N $\sim$ 10), to 0.1 pixel/step in low signa-to-noise ratio features (S/N $\sim$ 3) with the mean of about 0.06 pixel/step where 1 pixel/step corresponds roughly to 1 km/s in our case.

Report of the Oblique Ionospheric Sounding Results from Korea to Japan

  • Bae, Seok-Hee;Park, Chung-Rim;Wee, Kyu-Jin;Akira Ohtani;Mikitoshi Nagayama;Kiyoshi Igarashi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제22권1호
    • /
    • pp.1.2-5
    • /
    • 1994
  • Ionospheric sounding experiments have been conducted at RRL (Radio Research Laboratory), Ministry of Communications, using Digisonde 256 since its installation in 1990. Routine observations of the vertical sounding are carried out 48 times (or 39 times) a day, at every 24 hour. In addition, we also made oblique sounding experiments to obtain the real time data of Maximum Usable Frequency (MUF) and detect the anomalous HF propagation, as a part of the joint study between RRL and CRL (Communications Research Laboratory) of Japan. The two stations involved in the study were Anyang (RRL, Korea) and Kokubunji (CRL, Japan). The ionosondes used in both stations were Digisonde 256, developed by ULCAR (University of Lowell, Center for Atmospheric Research), U. S. A. , and the synchronization of time was accomplished with the help of GPS receiver. During most part of the experiments RRL transmitted non-modulated pulses, and CRL received them. The experiment was scheduled from October 25 through October 29, 1993. However, the ionosphere was not developed well enough to conduct the experiment with pre-set operation parameters. The experiment became successful (from 0500 UT to 0800 UT, October 29) only after the operation parameters had been changed, and the continuous ionograms were obtained by CRL at 0718 UT and 0733 UT in October 29, 1993. We believe this type of experiment will ensure the qualitative enhancement of solar-terrestrial physics research and a routine observation of the oblique ionospheric sounding. In this report, we present the results of the fore-mentioned oblique sounding as well as the vertical sounding results obtained by Digisonde 256 at Anyang station of RRL.

  • PDF

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Chae, Jong-Chul;Park, Hyung-Min;Park, Young-Deuk
    • 천문학회지
    • /
    • 제40권3호
    • /
    • pp.67-82
    • /
    • 2007
  • The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

Spatio-temporal estimation of air quality parameters using linear genetic programming

  • Tikhe, Shruti S.;Khare, K.C.;Londhe, S.N.
    • Advances in environmental research
    • /
    • 제6권2호
    • /
    • pp.83-94
    • /
    • 2017
  • Air quality planning and management requires accurate and consistent records of the air quality parameters. Limited number of monitoring stations and inconsistent measurements of the air quality parameters is a very serious problem in many parts of India. It becomes difficult for the authorities to plan proactive measures with such a limited data. Estimation models can be developed using soft computing techniques considering the physics behind pollution dispersion as they can work very well with limited data. They are more realistic and can present the complete picture about the air quality. In the present case study spatio-temporal models using Linear Genetic Programming (LGP) have been developed for estimation of air quality parameters. The air quality data from four monitoring stations of an Indian city has been used and LGP models have been developed to estimate pollutant concentration of the fifth station. Three types of models are developed. In the first type, models are developed considering only the pollutant concentrations at the neighboring stations without considering the effect of distance between the stations as well the significance of the prevailing wind direction. Second type of models are distance based models based on the hypothesis that there will be atmospheric interactions between the two stations under consideration and the effect increases with decrease in the distance between the two. In third type the effect of the prevailing wind direction is also considered in choosing the input stations in wind and distance based models. Models are evaluated using Band Error and it was observed that majority of the errors are in +/-1 band.

Merging and Splitting of Coronal Holes through a Solar Cycle

  • Jang, Min-Hwan;Choe, G.S.;Hong, Sun-Hak;Woods, Tom
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.99-99
    • /
    • 2011
  • A statistical study of coronal hole merging and splitting has been performed through Solar Cycle 23. The NOAA/SESC solar synoptic maps are examined to identify inarguably clear events of coronal hole merging and splitting. The numbers of merging events and splitting events are more or less comparable regardless of the phase in the solar cycle. The number of both events, however, definitely shows the phase dependence in the solar cycle. It apparently has a minimum at the solar minimum whereas its maximum is located in the declining phase of the sunspot activity, about a year after the second peak in Solar Cycle 23. There are more events of merging and splitting in the descending phase than in the ascending phase. Interestingly, no event is found at the local minimum between the two peaks of the sunspot activity. This trend can be compared with the variation of the average magnetic field strength and the radial field component in the solar wind through the solar cycle. In Ulysses observations, both of these quantities have a minimum at the solar minimum while their maximum is located in the descending phase, a while after the second peak of the sunspot activity. At the local minimum between the two peaks in the solar cycle, the field strength and the radial component both have a shallow local minimum or an inflection point. At the moment, the physical reason for these resembling tendencies is difficult to understand with existing theories. Seeing that merging and splitting of coronal holes are possible by passage of opposite polarity magnetic structures, we may suggest that the energizing activities in the solar surface such as motions of flux tubes are not exactly in phase with sunspot generation, but are more active some time after the sunspot maximum.

  • PDF

Physical Characteristics of Two Types of EUV Coronal Jets Observed by SDO/AIA

  • 김일훈;문용재;이진이;이경선;성숙경;김갑성
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.63.2-63.2
    • /
    • 2013
  • We have investigated the EUV coronal jets observed by Solar Dynamic Observatory (SDO) / Atmospheric Imaging Assembly (AIA). From the Heliophysics Events Knowledgebase (HEK), we consider all recorded 40 EUV jets in $171{\AA}$ from May 2010 to July 2011 and use 19 jets whose location can be clearly identified, excluding limb events because of the ambiguity of their positions. According to the positions of their roots, these coronal jets are classified into two types: bright point jet (BPJ, 9 jets) and active region boundary jet (ABJ, 10 jets). BPJs are located at the top of bright points and ABJs at the boundaries of active regions. There are significant differences in speed and size between two types. Here the speed and size of a jet are assumed to be its maximum values in the case that the jet has several ejections. The average speed and size of 9 BPJs are about 110 km/s and 69,000km, respectively. The average speed and size of 10 ABJs are about 660 km/s and 194,000 km, respectively. The speed distribution of ABJs has two peaks at about 270 km/s and 1700 km/s. It is very interesting to note that three ABJs have very high speeds larger than 1600 km/s and they are all composed of a group of recurrent jets with low and high speed at the same location. In addition, we are investigating these events in other wavelengths and compare their characteristics.

  • PDF

Climate changes impact on water resourcesinYellowRiverBasin,China

  • Zhu, Yongnan;Lin, Zhaohui;Wang, Jianhua;Zhao, Yong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.203-203
    • /
    • 2016
  • The linkage between climate change and water security, i.e., the response of water resource to the future climate change, have been of great concern to both scientific community and policy makers. In this study, the impact of future climate on water resources in Yellow River Basin in North of China has been investigated using the Coupled Land surface and Hydrology Model System (CLHMS) and IPCC AR5 projected future climate change in the basin. Firstly, the performances of 14 IPCC AR5 models in reproducing the observed precipitation and temperature in China, especially in North of China, have been evaluated, and it's suggested most climate models do show systematic bias compared with the observation, however, CNRM-CM5、HadCM5 and IPSL-CM5 model are generally the best models among those 14 models. Taking the daily projection results from the CNRM-CM5, along with the bias-correction technique, the response of water resources in Yellow river basin to the future climate change in different emission scenarios have been investigated. All the simulation results indicate a reduction in water resources. The current situation of water shortage since 1980s will keep continue, the water resources reduction varies between 28 and 23% for RCP 2.6 and 4.5 scenarios. RCP 8.5 scenario simulation shows a decrease of water resources in the early and mid 21th century, but after 2080, with the increase of rainfall, the extreme flood events tends to increase.

  • PDF

Can AI-generated EUV images be used for determining DEMs of solar corona?

  • 박은수;이진이;문용재;이경선;이하림;조일현;임다예
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.60.2-60.2
    • /
    • 2021
  • In this study, we determinate the differential emission measure(DEM) of solar corona using three SDO/AIA EUV channel images and three AI-generated ones. To generate the AI-generated images, we apply a deep learning model based on multi-layer perceptrons by assuming that all pixels in solar EUV images are independent of one another. For the input data, we use three SDO/AIA EUV channels (171, 193, and 211). For the target data, we use other three SDO/AIA EUV channels (94, 131, and 335). We train the model using 358 pairs of SDO/AIA EUV images at every 00:00 UT in 2011. We use SDO/AIA pixels within 1.2 solar radii to consider not only the solar disk but also above the limb. We apply our model to several brightening patches and loops in SDO/AIA images for the determination of DEMs. Our main results from this study are as follows. First, our model successfully generates three solar EUV channel images using the other three channel images. Second, the noises in the AI-generated EUV channel images are greatly reduced compared to the original target ones. Third, the estimated DEMs using three SDO/AIA images and three AI-generated ones are similar to those using three SDO/AIA images and three stacked (50 frames) ones. These results imply that our deep learning model is able to analyze temperature response functions of SDO/AIA channel images, showing a sufficient possibility that AI-generated data can be used for multi-wavelength studies of various scientific fields. SDO: Solar Dynamics Observatory AIA: Atmospheric Imaging Assembly EUV: Extreme Ultra Violet DEM: Diffrential Emission Measure

  • PDF

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.