DOI QR코드

DOI QR Code

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Published : 2007.09.30

Abstract

The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

Keywords

References

  1. Chae, J., Yun, H. S., & Poland, A. I. 1998, Temperature Dependence of Ultraviolet Line Average Doppler Shifts in the Quiet Sun, ApJS, 114, 151 https://doi.org/10.1086/313064
  2. Chae, J., Denker, C., Spirock, T. J., Wang, H., & Goode, P. R. 2000, High-Resolution $H_\alpha$, Observations of Proper Motion in NOAA 8668: Evidence for Filament Mass Injection by Chromospheric Reconnection, Sol. Phys., 195, 333
  3. Chae, J. 2003, The Formation of a Prominence in NOAA Active Region 8668. II. Trace Observations of Jets and Eruptions Associated with Canceling Magnetic Features, ApJ, 584, 1084 https://doi.org/10.1086/345739
  4. Chae, J., Moon, Y.-.J., & Park, Y.-D. 2005, The Magnetic Structure of Filament Barbs, ApJ, 626, 574 https://doi.org/10.1086/429797
  5. Chae, J., Park, Y.-D., & Park, H.-M. 2006, Imaging Spectroscopy of a Solar Filament Using a Tunable $H_\alpha$ Filter, Sol. Phys., 234, 115 (Paper I) https://doi.org/10.1007/s11207-006-0047-z
  6. Engvold, O. 1976, The fine structure of prominences. I - Observations - H-alpha filtergrams, Sol. Phys., 49, 283
  7. Engvold, O., Malville, J. M., & Livingston, W. 1978, The fine structure of prominences. V - Active edges of quiescent prominences, Sol. Phys., 60, 57
  8. Engvold, O., Jensen, E., Zhang, Y., & Brynildsen, N. 1989, Distribution of velocities in the Pre-Eruptive Phase of a Quiscent Prominence, Hvar Observatory Bulletin, 13, 205
  9. Karpen, J. T., Antiochos, S. K., & Klimchuk, J. A. 2006, The Origin of High-Speed Motions and Threads in Prominences, ApJ, 637, 531 https://doi.org/10.1086/498237
  10. Kubota, J., & Uesugi, A. 1986, The vertical motion of matter in a prominence observed on May 7, 1984, PASJ, 38, 903
  11. Kucera, T. A., Tovar, M., & de Pontieu, B. 2003, Prominence Motions Observed at High Cadences in Temperatures from 10,000 to 250,000 K, Sol. Phys., 212, 81 https://doi.org/10.1023/A:1022900604972
  12. Kucera, T. A., & Landi, E. 2006, Ultraviolet Observations of Prominence Activation and Cool Loop Dynamics, ApJ, 645, 1525 https://doi.org/10.1086/504398
  13. Kulidzanishvili, V. I. 1989, Mass Motions in a Quiescent Prominence and an Active One, Hvar Observatory Bulletin, 13, 215
  14. Lin, Y., Engvold, O. R., & Wiik, J. E. 2003, Counterstreaming in a Large Polar Crown Filament, Sol. Phys., 216, 109 https://doi.org/10.1023/A:1026150809598
  15. Lin, Y., 2004, Ph. D thesis, University of Oslo
  16. Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., & Berger, T. E. 2005, Thin Threads of Solar Filaments, Sol. Phys., 226, 239 https://doi.org/10.1007/s11207-005-6876-3
  17. Malherbe, J. M., Schmieder, B., & Mein, P. 1981,Dynamics in the filaments. I - Oscillations in a quiescent filament, A&A, 102, 124
  18. Martres, M.-J., Mein, P., Schmieder, B., & Soru-Escaut, I. 1981, Structure and evolution of velocities in quiescent filaments, Sol. Phys., 69, 301
  19. Mein, P. 1977, Multi-channel subtractive spectrograph and filament observations, solphys, 54, 45
  20. Mein, P. 1994, Fine Structure of Prominences and Filaments, IAU Colloq. 144: Solar Coronal Structures, 289
  21. Mein, P., & Mein, N. 1991, Dynamical fine structure of a quiescent prominence, Sol. Phys., 136, 317 https://doi.org/10.1007/BF00146539
  22. Mein, P., Mein, N., Schmieder, B., & Noens, J. C. 1989, Dynamical Structure of a Quiescent Prominence, Hvar Observatory Bulletin, 13, 113
  23. Mein, N., Mein, P., & Wiik, J. E. 1994, Dynamical fine structure of a quiescent filament, Sol. Phys., 151, 75 https://doi.org/10.1007/BF00654083
  24. Mein, N., Schmieder, B., DeLuca, E. E., Heinzel, P., Mein, P., Malherbe, J. M., & Staiger, J. 2001, A Study of Hydrogen Density in Emerging Flux Loops from a Coordinated Transition Region and Coronal Explorer and Canary Islands Observation Campaign, ApJ, 556, 438 https://doi.org/10.1086/321488
  25. Schmieder, B., Raadu, M. A., & Wiik, J. E. 1991, Fine structure of solar filaments. II - Dynamics of threads and footpoints, A&A, 252, 353
  26. Simon, G., Schmieder, B., Demoulin, P., & Poland, A. I. 1986, Dynamics of solar filaments. VI - Center-to-limb study of H-alpha and C IV velocities in a quiescent filament, A&A, 166, 319
  27. Wallace, L., Hinkle, K., & Livingston, W. 1998, An atlas of the spectrum of the solar photosphere from 13,500 to 28,000 cm-1 (3570 to 7405 A), Publisher: TUcson, AZ:National Optical Astronomy Observatories, 1998
  28. Wang, Y.-M. 1999, The Jetlike Nature of HE II lambda304 Prominences, ApJ, 520, L71
  29. You, J.-Y. & Engvold, O. 1989, Vertical Flows in a Quiescent Filament, Hvar Observatory Bulletin, 13, 197
  30. Zirker, J. B., & Koutchmy, S. 1990, Prominence fine structure, Sol. Phys., 127, 109 https://doi.org/10.1007/BF00158516
  31. Zirker, J. B., & Koutchmy, S. 1991, Prominence fine structure. II - Diagnostics, Sol. Phys., 131, 107
  32. Zirker, J. B., Engvold, O., & Martin, S. F. 1998, Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields, Nature, 396, 440

Cited by

  1. An active region filament studied simultaneously in the chromosphere and photosphere vol.542, 2012, https://doi.org/10.1051/0004-6361/201218887
  2. Physics of Solar Prominences: I—Spectral Diagnostics and Non-LTE Modelling vol.151, pp.4, 2010, https://doi.org/10.1007/s11214-010-9630-6
  3. SPECTRAL INVERSION OF THE Hα LINE FOR A PLASMA FEATURE IN THE UPPER CHROMOSPHERE OF THE QUIET SUN vol.780, pp.1, 2013, https://doi.org/10.1088/0004-637X/780/1/109
  4. MAGNETIC TOPOLOGY OF BUBBLES IN QUIESCENT PROMINENCES vol.761, pp.1, 2012, https://doi.org/10.1088/0004-637X/761/1/9
  5. ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C vol.775, pp.1, 2013, https://doi.org/10.1088/2041-8205/775/1/L32