• 제목/요약/키워드: Atmospheric Plasma

Search Result 597, Processing Time 0.04 seconds

Surface Treatment of Transparent Conductive films and Polymer Materials (투명전도막 및 고분자 재료의 표면처리)

  • Lee, Bong-Ju;Lee, Hyun-Kyu;Chung, Soo-Bok;Lee, Kyung-Sub;Kim, Hyung-Kon;Chung, Hyoan-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.15-17
    • /
    • 2001
  • A new possibility of our atmospheric cold plasma torch has been examined on the surface treatment of an air-exposed vulcanized rubber compound. The plasma treatment effect was evaluated by the bondability with another rubber compound using a polyurethane adhesive.

  • PDF

A Study on the Polychlorinated Biphenyls in Human Blood (혈중 PCB 함량에 관한 조사)

  • 김돈균;정갑열;이수일;황인철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.9-15
    • /
    • 1985
  • For the purpose of obtaining the index that represents the contaminated status due to polychlorinated biphenyls (PCB) in the human body, the authors investigated the contents of PCB in the plasma of 183 subjects who were not exposured to the massive amount of PCB occupationaly in the past. The obtained results were as follows; 1. The mean contents of PCB in plasma were 3.35 $\pm$ 1.48 ppb in male and 3.04 $\pm$ 1.06 ppb in female. $Cl_4$ and $Cl_3$ were the main isomers in both sexes. 2. The distribution of total-PCB by the age group was showed increasing tendency with the age in both sexes. 3. The tendency of freqyency distribution of total-PCB level were skewed to the higher level in malo and skewed to the lower level in female. 4. There was satistically significant interrelationship between age and total-PCB in plasma in both sexes.

  • PDF

Development of Hydrophilic Surface Treatment System by Atmospheric Pressure Plasma Jet

  • Cha, Ju-Hong;Ha, Chang-Seung;Son, Ui-Jeong;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.222.2-222.2
    • /
    • 2014
  • 대기압 플라즈마는 기존의 저압 플라즈마에 비해 제작이 간단하고 조작이 간편하기 때문에 응용 가능 분야가 넓다는 장점이 있지만 다양한 외부 요인으로 인한 안정성의 문제로 저압 플라즈마의 모든 응용범위를 대신하기에는 문제점이 있다. 현재 이 문제점을 해결하기 위한 연구가 활발히 진행 중에 있으며, 기판 및 유리 세정, Bio-medical, 물질 합성 등 다양한 분야에 대한 응용 연구도 진행 중에 있다. 본 연구에서는 본 연구실에서 자체 개발한 전원 장치를 이용하여 대기압 플라즈마를 발생 시켰으며, He, Ar Gas를 이용하여 PDMS 기판과 유리 기판에 표면 처리 한 후 친수성 비교 분석 실험을 실시하였다. Optical Emission Spectroscopy(OES)장치와 ICCD camera를 이용하여 플라즈마 진단과 특성 분석을 실시하였으며 Computer Numerical Control (CNC) x-y-z 3축 stage를 이용하여 플라즈마 발생을 제어함으로서 재현성을 높은 플라즈마 표면 처리 연구를 진행 하였다.

  • PDF

Decomposition of Odorous Gases in a Pilot-scale Nonthermal Plasma Reactor

  • Hwang, Yoon-Ho;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.57-65
    • /
    • 2005
  • An experimental study was performed on the decomposition of gaseous ammonia and two selected volatile organic compounds (VOCs: toluene and acetone) in a combined nonthermal plasma reactor with corona and glow discharges. A lab pilot scale reactor (206 liter) equipped with a high electric power pack was used to determine the decomposition efficiency in relation with the inlet concentration and applied voltage. Three different types of discharging electrode such as wired rack, wire strings for corona discharge, and thin plate for glow discharge were put in order in the reactor. While decomposition of ammonia decreased with an increase in the initial concentration, acetone showed an opposite result. In the case of toluene however no explicit tendency was found in toluene and aceton. Negative discharge resulted in high decomposition efficiency than the positive one for all gases. A better removal of gas phase element could be achieved when fume dust were present simultaneously.

The Study of Improvement in the Characteristics of Oxide Thin Film Transistor by using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 산화물 박막 트랜지스터 표면처리에 관한 연구)

  • Kim, Ga Young;Kim, Kyong Nam;Yeom, Geun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.7-10
    • /
    • 2015
  • Recently, oxide TFTs has attracted a lot of interests due to their outstanding properties such as excellent environmental stability, high mobility, wide-band gap energy and high transparency, and investigated through the method using vacuum system and wet solution. In the case of the method using wet solution, process is very simple, however, annealing process should be included. In this study, to overcome the problem of annealing process, atmospheric pressure plasma was used for annealing, and the electrical characteristics such as on/off ration and mobility of device were investigated.

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

Performance Evaluation for Fast Conversion from Urea to an Ammonia Conversion Technology with a Plasma Burner (플라즈마 버너를 적용한 요소수에서 암모니아로의 고속 전환 기술 성능 평가)

  • Jo, Sungkwon;Kim, Kwan-Tae;Lee, Dae Hoon;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.526-535
    • /
    • 2016
  • Recently, fine dust in atmosphere have been considerably issued as a harmful element for human. Nitrogen oxide ($NO_x$) exhausted from diesel engines and power plants has been disclosed as a main source of secondary production of fine dust. In order to prevent exhausting these nitrogenous compounds into atmosphere, a treatment system with selective catalytic reduction (SCR) catalyst with ammonia as a reductant has been used in various industries. Urea solution has been widely studied to supply ammonia into a SCR catalytic reactor, safely. However, the conversion of urea solution to ammonia has several challenges, especially on a slow conversion velocity. In the present study, a fast urea conversion system including a plasma burner was suggested and designed to evaluate the performances of urea conversion and initial operation time. A designed lab-scale facility has a plasma burner, urea nozzle, mixer, and SCR catalyst which is for hydrolysis of isocyane. Flow rate of methane that is a fuel of the plasma burner was varied to control temperatures in the urea conversion facility. From experimental results, it is found that urea can be converted into ammonia using high temperature condition of above $400^{\circ}C$. In the designed test facility, it is found that ammonia can be produced within 1 min from urea injection and the result shows prospect commercialization of proposed technology in the SCR facilities.

An Evaluation of the Repetitive Tooth Bleaching with Nonthermal Atmospheric Pressure Plasma

  • Nam, Seoul Hee;Kim, Gyoo Cheon;Hong, Jin Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • This study was undertaken to achieve a high bleaching efficacy with plasma, through longer application and reparative bleaching processes, by different shade evaluation methods. Extracted human teeth were divided into 6 groups (n=10). All teeth were treated in pairs. Low concentration of 15% carbamide peroxide (CP) was applied, with and without plasma, for 10, 20, and 30-min tooth bleaching, respectively. The bleaching procedure was repeated once daily for four days. The teeth were maintained in a moist environment provided by artificial saliva. The Vitapan Classical shade guide and Commission Internationale de L'Eclairage (CIELAB) color system were collectively used to measure the bleaching efficacy. Color evaluation was statistically analyzed using Student t-test and one-way analysis of variance (ANOVA) complemented by Tukey's test. Combining the plasma with 15% CP showed significantly greater color changes compared to bleaching without plasma (p<0.05). A high bleaching efficacy with plasma is proportional to the repetitive application and the treatment time. A 30-min application with plasma provided the best bleaching. Repetitive bleaching showed lower probability of color relapse of the bleached tooth. The color change by shade guide correlated with the changes in CIELAB color system. A value of 1 color change units (CCU) conversion factor for overall color change (${\Delta}E$) values comparisons was 3.724 values. The two measuring methods provide a more accurate correspondence of color change. The repetitive and longer application for tooth bleaching, combined with plasma, has a strong bleaching effect and produces whiter teeth.

Study on the $N_2$ Plasma Treatment of Nanostructured $TiO_2$ Film to Improve the Performance of Dye-sensitized Solar Cell

  • Jo, Seul-Ki;Roh, Ji-Hyung;Lee, Kyung-Joo;Song, Sang-Woo;Park, Jae-Ho;Shin, Ju-Hong;Yer, In-Hyung;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.337-337
    • /
    • 2012
  • Dye sensitized solar cell (DSSC) having high efficiency with low cost was first reported by Gr$\ddot{a}$tzel et al. Many DSSC research groups attempt to enhance energy conversion efficiency by modifying the dye, electrolyte, Pt-coated electrode, and $TiO_2$ films. However, there are still some problems against realization of high-sensitivity DSSC such as the recombination of injected electrons in conduction band and the limited adsorption of dye on $TiO_2$ surface. The surface of $TiO_2$ is very important for improving hydrophilic property and dye adsorption on its surface. In this paper, we report a very efficient method to improve the efficiency and stability of DSSC with nano-structured $TiO_2$. Atmospheric plasma system was utilized for nitrogen plasma treatment on nano-structured $TiO_2$ film. We confirmed that the efficiency of DSSC was significantly dependent on plasma power. Relative in the $TiO_2$ surface change and characteristics after plasma was investigated by various analysis methods. The structure of $TiO_2$ films was examined by X-ray diffraction (XRD). The morphology of $TiO_2$ films was observed using a field emission scanning electron microscope (FE-SEM). The surface elemental composition was determined using X-ray photoelectron spectroscopy (XPS). Each of plasma power differently affected conversion efficiency of DSSC with plasma-treated $TiO_2$ compared to untreated DSSC under AM 1.5 G spectral illumination of $100mWcm^{-2}$.

  • PDF