• Title/Summary/Keyword: Asymptotic regression method

Search Result 50, Processing Time 0.018 seconds

The Comparison Analysis of an Estimators of Nonlinear Regression Model using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 비선형회귀추정량들의 비교 분석)

  • 김태수;이영해
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.43-51
    • /
    • 2000
  • In regression model, we estimate the unknown parameters by using various methods. There are the least squares method which is the most general, the least absolute deviation method, the regression quantile method and the asymmetric least squares method. In this paper, we will compare each others with two cases: firstly the theoretical comparison in the asymptotic sense and then the practical comparison using Monte Carlo simulation for a small sample size.

  • PDF

Monte Carlo simulation of the estimators for nonlinear regression model (비선형 회귀모형 추정량들의 몬데칼로 시뮬레이션에 의한 비교)

  • 김태수;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.6-10
    • /
    • 2000
  • In regression model we estimate the unknown parameters using various methods. There are the least squares method which is the most general, the least absolute deviation, the regression quantile and the asymmetric least squares method. In this paper, we will compare each others with two case: to begin with the theoretical comparison in the asymptotic sense, and then the practical comparison using Monte Carlo simulation for a small sample size.

  • PDF

Nonlinear Regression Quantile Estimators

  • Park, Seung-Hoe;Kim, Hae kyung;Park, Kyung-Ok
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.551-561
    • /
    • 2001
  • This paper deals with the asymptotic properties for statistical inferences of the parameters in nonlinear regression models. As an optimal criterion for robust estimators of the regression parameters, the regression quantile method is proposed. This paper defines the regression quintile estimators in the nonlinear models and provides simple and practical sufficient conditions for the asymptotic normality of the proposed estimators when the parameter space is compact. The efficiency of the proposed estimator is especially well compared with least squares estimator, least absolute deviation estimator under asymmetric error distribution.

  • PDF

A Nonparametric Method for Nonlinear Regression Parameters

  • Kim, Hae-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.1
    • /
    • pp.46-61
    • /
    • 1989
  • This paper is concerned with the development of a nonparametric procedure for the statistical inference about the nonlinear regression parameters. A confidence region and a hypothesis testing procedure based on a class of signed linear rank statistics are proposed and the asymptotic distributions of the test statistic both under the null hypothesis and under a sequence of local alternatives are investigated. Some desirable asymptotic properties including the asymptotic relative efficiency are discussed for various score functions.

  • PDF

EVALUATION OF PARAMETER ESTIMATION METHODS FOR NONLINEAR TIME SERIES REGRESSION MODELS

  • Kim, Tae-Soo;Ahn, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.315-326
    • /
    • 2009
  • The unknown parameters in regression models are usually estimated by using various existing methods. There are several existing methods, such as the least squares method, which is the most common one, the least absolute deviation method, the regression quantile method, and the asymmetric least squares method. For the nonlinear time series regression models, which do not satisfy the general conditions, we will compare them in two ways: 1) a theoretical comparison in the asymptotic sense and 2) an empirical comparison using Monte Carlo simulation for a small sample size.

  • PDF

Local Bandwidth Selection for Nonparametric Regression

  • Lee, Seong-Woo;Cha, Kyung-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.453-463
    • /
    • 1997
  • Nonparametric kernel regression has recently gained widespread acceptance as an attractive method for the nonparametric estimation of the mean function from noisy regression data. Also, the practical implementation of kernel method is enhanced by the availability of reliable rule for automatic selection of the bandwidth. In this article, we propose a method for automatic selection of the bandwidth that minimizes the asymptotic mean square error. Then, the estimated bandwidth by the proposed method is compared with the theoretical optimal bandwidth and a bandwidth by plug-in method. Simulation study is performed and shows satisfactory behavior of the proposed method.

  • PDF

Polynomial Boundary Treatment for Wavelet Regression

  • Oh Hee-Seok;Naveau Philppe;Lee GeungHee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.27-32
    • /
    • 2000
  • To overcome boundary problems with wavelet regression, we propose a simple method that reduces bias at the boundaries. It is based on a combination of wavelet functions and low-order polynomials. The utility of the method is illustrated with simulation studies and a real example. Asymptotic results show that the estimators are competitive with other nonparametric procedures.

  • PDF

Applications of the Type III Asymptotic Distribution for Extreme Sea Level Computations (극한 파고 계산에 있어서 Type III 분포의 응용)

  • T.I. Lee;S.H. Kwon;Y.K. Chon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 1992
  • The computational methods of extreme sea level are developed in this study. Based on type III asymptotic distribution, non-linear multiple regression method, skewness method and maximum likelihood method are used to evaluate the parameters of the distribution. The difference between real data and evaluated distribution function is fitted to get more desirable accuracy by employing polynominals. The numerical examples are given in the last section in order to illustrate the application of the present scheme.

  • PDF

On Bootstrapping; Bartlett Adjusted Empirical Likelihood Ratio Statistic in Regression Analysis

  • Woochul Kim;Duk-Hyun Ko;Keewon Lee
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.205-216
    • /
    • 1996
  • The bootstrap calibration method for empirical likelihood is considered to make a confidence region for the regression coefficients. Asymptotic properties are studied regarding the coverage probability. Small sample simulation results reveal that the bootstrap calibration works quite well.

  • PDF

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.