• 제목/요약/키워드: Asymptotic behavior

검색결과 267건 처리시간 0.021초

OSCILLATION AND ASYMPTOTIC BEHAVIOR FOR DELAY DIFFERENTIAL EQUATIONS

  • Choi, Sung-Kyu;Koo, Nam-Jip;Ryu, Hyun-Sook
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.641-652
    • /
    • 2000
  • In this paper we will survey the recent results about oscillation and asymptotic behavior for the linear differential equation with a single delay x'9t)+p(t)x(t-r)=0, $t\geqt_1$.

Asymptotic cell loss decreasing rate in an ATM multiplexer loaded with heterogeneous on-off sources

  • Choi, Woo-Yong;Jun, Chi-Hyuck
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.543-546
    • /
    • 1996
  • Recently, some research has been done to analyze the asymptotic behavior of queue length distribution in ATM (Asynchronous Transfer Mode) multiplexer. In this paper, we relate this asymptotic behavior with the asymptotic behavior of decreasing cell loss probability when the buffer capacity is increased. We find with reasonable assumptions that the asymptotic rate of queue length distribution is the same as that of decreasing cell loss probability. Even under different priority control schemes and traffic classes, we find that this asymptotic rate of the individual cell loss probability of each traffic class does not change. As a consequence, we propose the upper bound of cell loss probability of each traffic class when a priority control scheme is employed. This bound is computationally feasible in a real-time. The numerical examples will be provided to validate this finding.

  • PDF

Asymptotic behavior of ideals relative to injective A-modules

  • Song, Yeong-Moo
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.491-498
    • /
    • 1995
  • This paper is concerned with an asymptotic behavior of ideals relative to injective modules ove the commutative Noetherian ring A : under what conditions on A can we show that $$\bar{At^*}(a,E)=At^*(a,E)$?

  • PDF

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC BEHAVIOR OF PERTURBED DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Goo, Yoon Hoe
    • 충청수학회지
    • /
    • 제29권3호
    • /
    • pp.429-442
    • /
    • 2016
  • In this paper we show that the solutions to the perturbed differential system $$y^{\prime}=f(t,y)+{\int}_{to}^{t}g(s,y(s),Ty(s))ds$$ have uniformly Lipschitz stability and asymptotic behavior by imposing conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds$ and the fundamental matrix of the unperturbed system y' = f(t, y).

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE GENERALIZED MHD AND HALL-MHD SYSTEMS IN ℝn

  • Zhu, Mingxuan
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.735-747
    • /
    • 2018
  • This paper deals with the asymptotic behavior of solutions to the generalized MHD and Hall-MHD systems. Firstly, the upper bound for the generalized MHD and Hall-MHD systems is investigated in $L^2$ space. Then, the effect of the Hall term is analyzed. Finally, we optimize the upper bound of decay and obtain their algebraic lower bound for the generalized MHD system by using Fourier splitting method.