DOI QR코드

DOI QR Code

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC BEHAVIOR OF PERTURBED DIFFERENTIAL SYSTEMS

  • Received : 2016.03.10
  • Accepted : 2016.07.15
  • Published : 2016.08.15

Abstract

In this paper we show that the solutions to the perturbed differential system $$y^{\prime}=f(t,y)+{\int}_{to}^{t}g(s,y(s),Ty(s))ds$$ have uniformly Lipschitz stability and asymptotic behavior by imposing conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds$ and the fundamental matrix of the unperturbed system y' = f(t, y).

Keywords

References

  1. V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
  2. F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 14 (1966), 198-206. https://doi.org/10.1016/0022-247X(66)90021-7
  3. F. Brauer and A. Strauss, Perturbations of nonlinear systems of differential equations, III, J. Math. Anal. Appl. 31 (1970), 37-48. https://doi.org/10.1016/0022-247X(70)90118-6
  4. F. Brauer, Perturbations of nonlinear systems of differential equations, IV, J. Math. Anal. Appl. 37 (1972), 214-222. https://doi.org/10.1016/0022-247X(72)90269-7
  5. S. I. Choi and Y. H. Goo, Boundedness in perturbed nonlinear functional differential systems, J. Chungcheong Math. Soc. 28 (2015), 217-228. https://doi.org/10.14403/jcms.2015.28.2.217
  6. S. I. Choi and Y. H. Goo, Lipschitz and asymptotic stability of nonlinear systems of perturbed differential systems, J. Chungcheong Math. Soc. 27 (2014), 591-602. https://doi.org/10.14403/jcms.2014.27.4.591
  7. S. K. Choi, Y. H. Goo, and N. J. Koo, Lipschitz and exponential asymptotic stability for nonlinear functional systems, Dynamic Systems and Applications 6 (1997), 397-410.
  8. F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential systems, J. Math. Anal. Appl. 113 (1986), 562-577. https://doi.org/10.1016/0022-247X(86)90325-2
  9. S. Elaydi and H. R. Farran, Exponentially asymptotically stable dynamical systems, Appl. Anal. 25 (1987), 243-252. https://doi.org/10.1080/00036818708839688
  10. P. Gonzalez and M. Pinto, Stability properties of the solutions of the nonlinear functional differential systems, J. Math. Appl. 181 (1994), 562-573.
  11. Y. H. Goo, Lipschitz and asymptotic stability for perturbed nonlinear differential systems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 11-21.
  12. Y. H. Goo, Uniform Lipschitz stability and asymptotic behavior for perturbed differential systems, Far East J. Math. Sci(FJMS) 99 (2016), 393-412. https://doi.org/10.17654/MS099030393
  13. Y. H. Goo, Asymptotic property for nonlinear perturbed functional differential systems, Far East J. Math. Sci(FJMS) 99 (2016), 1141-1157. https://doi.org/10.17654/MS099081141
  14. Y. H. Goo and Y. Cui, Lipschitz and asymptotic stability for perturbed differential systems, J. Chungcheong Math. Soc. 26 (2013), 831-842. https://doi.org/10.14403/jcms.2013.26.4.831
  15. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol.I, Academic Press, New York and London, 1969.
  16. B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear systems, J. Math. Anal. Appl. 16 (1974), 14-25.
  17. B. G. Pachpatte, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 51 (1975), 550-556. https://doi.org/10.1016/0022-247X(75)90106-7

Cited by

  1. ASYMPTOTIC PROPERTY OF PERTURBED NONLINEAR SYSTEMS vol.30, pp.1, 2016, https://doi.org/10.14403/jcms.2017.30.1.103
  2. UNIFORMLY LIPSCHITZ STABILITY OF PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS vol.30, pp.2, 2016, https://doi.org/10.14403/jcms.2017.30.2.273