• Title/Summary/Keyword: Asymptotic Theory

Search Result 179, Processing Time 0.025 seconds

Envelope empirical likelihood ratio for the difference of two location parameters with constraints of symmetry

  • Kim, Kyoung-Mi;Zhou, Mai
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.51-73
    • /
    • 2002
  • Empirical likelihood ratio method is a new technique in nonparametric inference developed by A. Owen (1988, 2001). Sometimes empirical likelihood has difficulties to define itself. As such a case in point, we discuss the way to define a modified empirical likelihood for the location of symmetry using well-known points of symmetry as a side conditions. The side condition of symmetry is defined through a finite subset of the infinite set of constraints. The modified empirical likelihood under symmetry studied in this paper is to construct a constrained parameter space $\theta+$ of distributions imposing known symmetry as side information. We show that the usual asymptotic theory (Wilks theorem) still hold for the empirical likelihood ratio on the constrained parameter space and the asymptotic distribution of the empirical NPMLE of difference of two symmetric points is obtained.

  • PDF

Nonparametric Tests for Detecting Greater Residual Life Times

  • Lim, Jae-Hak;Ibrahim A. Ahmad;Park, Dong-Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.167-175
    • /
    • 2004
  • A nonparametric procedure is proposed to test the exponentiality against the hypothesis that one life distribution has a greater residual life times than the other life distribution. Such a hypothesis turns out to be equivalent to the one that one failure rate is greater than the other and so the proposed test works as a competitor to more IFR tests by Kochar (1979, 1981) and Cheng (1985). Our test statistic utilizes the U-statistics theory and a large sample nonpara metric test is established. The power of the proposed test is discussed by calculating the Pitman asymptotic relative efficiencies against several alter native hypotheses. A numerical example is presented to exemplify the proposed test.

  • PDF

A Stability Analysis Scheme for a Class of First-Order Nonlinear Time-Delay Systems (일종의 일차 비선형 시간 지연 시스템을 위한 안정성 분석 방법)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.554-557
    • /
    • 2008
  • We analyze the stability property of a class of nonlinear time-delay systems with time-varying delays. We present a time-delay independent sufficient condition for the global asymptotic stability. In order to prove the sufficient condition, we exploit the inherent property of the considered systems instead of applying the Krasovskii or Razumikhin stability theory that may cause the mathematical difficulty of analysis. We prove the sufficient condition by constructing two sequences that represent the lower and upper bound variations of system state in time, and showing the two sequences converge to an identical point, which is the equilibrium point of the system. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.

ASYMPTOTIC STABILITY OF NON-AUTONOMOUS UPPER TRIANGULAR SYSTEMS AND A GENERALIZATION OF LEVINSON'S THEOREM

  • Lee, Min-Gi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.237-253
    • /
    • 2020
  • This article studies asymptotic stability of non-auto nomous linear systems with time-dependent coefficient matrices {A(t)}t∈ℝ. The classical theorem of Levinson has been widely used to science and engineering non-autonomous systems, but systems with defective eigenvalues could not be covered because such a family does not allow continuous diagonalization. We study systems where the family allows to have upper triangulation and to have defective eigenvalues. In addition to the wider applicability, working with upper triangular matrices in place of Jordan form matrices offers more flexibility. We interpret our and earlier works including Levinson's theorem from the perspective of invariant manifold theory.

Asymptotic analysis of ignition of a semi-infinite body for a large activation energy (활성화 에너지가 매우 큰 경우에 점근법을 이용한 반무한체의 점화에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.703-707
    • /
    • 1989
  • The ignition of solid particle under strong convective heating has been investigated by applying an asymptotic analysis to a semi-infinite body for varying values of gas recovery temperature and convective heat transfer coefficient. It was found that if the scale of the reaction zone is much smaller than the characteristic length of the body size, then infinite body theory can be used to estimate the ignition delay time. Furthermore, the convective heat transfer coefficient was found to have more influence on predicting the ignition delay times of particle exposed to an incident shock wave rather than the gas recovery temperature.

Development of Estimation Algorithm of Latent Ability and Item Parameters in IRT (문항반응이론에서 피험자 능력 및 문항모수 추정 알고리즘 개발)

  • Choi, Hang-Seok;Cha, Kyung-Joon;Kim, Sung-Hoon;Park, Chung;Park, Young-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.465-481
    • /
    • 2008
  • Item response theory(IRT) estimates latent ability of a subject based on the property of item and item parameters using item characteristics curve(ICC) of each item case. The initial value and another problems occurs when we try to estimate item parameters of IRT(e.g. the maximum likelihood estimate). Thus, we propose the asymptotic approximation method(AAM) to solve the above mentioned problems. We notice that the proposed method can be thought as an alternative to estimate item parameters when we have small size of data or need to estimate items with local fluctuations. We developed 'Any Assess' and tested reliability of the system result by simulating a practical use possibility.

Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness

  • Eipakchi, Hamidreza;Nasrekani, Farid Mahboubi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.241-256
    • /
    • 2022
  • In this article, an analytical procedure is presented for static analysis of composite cylinders with the geometrically nonlinear behavior, and non-uniform thickness profiles under different loading conditions by considering moderately large deformation. The composite cylinder includes two inner and outer isotropic layers and one honeycomb core layer with adjustable Poisson's ratio. The Mirsky-Herman theory in conjunction with the von-Karman nonlinear theory is employed to extract the governing equations which are a system of nonlinear differential equations with variable coefficients. The governing equations are solved analytically using the matched asymptotic expansion (MAE) method of the perturbation technique and the effects of moderately large deformations are studied. The presented method obtains the results with fast convergence and high accuracy even in the regions near the boundaries. Highlights: • An analytical procedure based on the matched asymptotic expansion method is proposed for the static nonlinear analysis of composite cylindrical shells with a honeycomb core layer and non-uniform thickness. • The effect of moderately large deformation has been considered in the kinematic relations by assuming the nonlinear von Karman theory. • By conducting a parametric study, the effect of the honeycomb structure on the results is studied. • By adjusting the Poisson ratio, the effect of auxetic behavior on the nonlinear results is investigated.

분포매개정수를 갖는 원자로의 최적제어 2

  • 지창열
    • 전기의세계
    • /
    • v.29 no.4
    • /
    • pp.256-259
    • /
    • 1980
  • A singular pertubation theory is applied to obtain an approximate solution for suboptimal control of nuclear reactors with spatially distributed parameters. The inverse of the neutron velocity is regarded as a small perturbing parameter, and the model, adopted for simplicity, is a cylindrically symmetrical reactor whose dynamics are described by the one group diffusion equation with one delayed neutron group. The Helmholtz mode expansion is used for the application of the optimal theory for lumped parameter systems to the spatially distributed parameter systems. An asymptotic expansion of the feedback gain matrix is obtained with construction of the boundary layer correction up to the first order.

  • PDF

A Note on the Asymptotic Structure of the $90^{\circ}$-Corner Flow ($90^{\circ}$-모서리 유동의 점근적 구조에 관한 소효)

  • Suh, Yong-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.46-50
    • /
    • 1988
  • $90^{\circ}$-모서리 주위의 유동에 관한 수치해석결과를 바탕으로 그 유동구조를 점근적으로 해석하였다. 전체유동구조는 고전적 자유유선 이론에 의한 모델과 일치하였으며 경계층 박리점 주위의 유동구조는 최근의 트리플뎨 이론에 근거하였으며 그 결과가 수치해석의 결과와 아주 잘 맞는데 따른 결과이다.

  • PDF

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.