• Title/Summary/Keyword: Asymmetric two-way relay

Search Result 10, Processing Time 0.031 seconds

Joint Relay Selection and Power Allocation for Two-way Relay Channels with Asymmetric Traffic Requirements

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1955-1971
    • /
    • 2013
  • This paper studies relay selection and power allocation for amplify-and-forward (AF) based two-way relay networks (TWRN) with asymmetric traffic requirements (ATR). A joint relay selection and power allocation algorithm is proposed to decrease the outage probability of TWRN with ATR. In this algorithm, two sources exchange information with the help of the relay during two time slots. We first calculate the optimal power allocation parameters based on instantaneous channel state information (CSI), and then derive a tight lower bound of outage probability. Furthermore, we propose a simplified relay selection criterion, which can be easily calculated as harmonic mean of instantaneous channel gains, according to the outage probability expressions. Simulation results verified the theoretical analyses we presented. It is shown that the outage probability of our algorithm improves 3-4dB comparing with that of other existing algorithms, and the lower bound is tight comparing with actual value for the entire signal-to-noise ratio (SNR) region.

Generalized Joint Channel-Network Coding in Asymmetric Two-Way Relay Channels

  • Shen, Shengqiang;Li, Shiyin;Li, Zongyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5361-5374
    • /
    • 2016
  • Combining channel coding and network coding in a physical layer in a fading channel, generalized joint channel-network coding (G-JCNC) is proved to highly perform in a two-way relay channel (TWRC). However, most relevant discussions are restricted to symmetric networks. This paper investigates the G-JCNC protocols in an asymmetric TWRC (A-TWRC). A newly designed encoder used by source nodes that is dedicated to correlate codewords with different orders is presented. Moreover, the capability of a simple common non-binary decoder at a relay node is verified. The effects of a power match under various numbers of iteration and code lengths are also analyzed. The simulation results give the optimum power match ratio and demonstrate that the designed scheme based on G-JCNC in an A-TWRC has excellent bit error rate performance under an appropriate power match ratio.

Average Rate Performance of Two-Way Amplify-and-Forward Relaying in Asymmetric Fading Channels

  • Park, Jae-Cheol;Song, Iick-Ho;Lee, Sung-Ro;Kim, Yun-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.250-256
    • /
    • 2011
  • A two-way relaying (TWR) system is analyzed, where two source terminals with unequal numbers of antennas exchange data via an amplify-and-forward relay terminal with a single antenna. In the system considered herein, the link quality between the sources and relay can generally be asymmetric due to the nonidentical antenna configuration, power allocation, and relay location. In such a general setup, accurate bounds on the average sum rate (ASR) are derived when beamforming or orthogonal space time block coding is employed at the sources. We show that the proposed bounds are almost indistinguishable from the exact ASR under various system configurations. It is also observed that the ASR performance of the TWR system with unequal numbers of source antennas is more sensitive to the relay location than to the power allocation.

Energy-Aware Hybrid Cooperative Relaying with Asymmetric Traffic

  • Chen, Jian;Lv, Lu;Geng, Wenjin;Kuo, Yonghong
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.717-726
    • /
    • 2015
  • In this paper, we study an asymmetric two-way relaying network where two source nodes intend to exchange information with the help of multiple relay nodes. A hybrid time-division broadcast relaying scheme with joint relay selection (RS) and power allocation (PA) is proposed to realize energy-efficient transmission. Our scheme is based on the asymmetric level of the two source nodes' target signal-to-noise ratio indexes to minimize the total power consumed by the relay nodes. An optimization model with joint RS and PA is studied here to guarantee hybrid relaying transmissions. Next, with the aid of our proposed intelligent optimization algorithm, which combines a genetic algorithm and a simulated annealing algorithm, the formulated optimization model can be effectively solved. Theoretical analyses and numerical results verify that our proposed hybrid relaying scheme can substantially reduce the total power consumption of relays under a traffic asymmetric scenario; meanwhile, the proposed intelligent optimization algorithm can eventually converge to a better solution.

Performance Optimization of Two-Way AF Relaying in Asymmetric Fading Channels

  • Qi, Yanyan;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4432-4450
    • /
    • 2014
  • It is widely observed that in practical wireless cooperative communication systems, different links may experience different fading characteristics. In this paper, we investigate into the outage probability and channel capacity of two-way amplify-and-forward (TWAF) relaying systems operating over a mixed asymmetric Rician and Rayleigh fading scenario, with different amplification policies (AP) adopted at the relay, respectively. As TWAF relay network carries concurrent traffics towards two opposite directions, both end-to-end and overall performance metrics were considered. In detail, both uniform exact expressions and simplified asymptotic expressions for the end-to-end outage probability (OP) were presented, based on which the system overall OP was studied under the condition of the two source nodes having non-identical traffic requirements. Furthermore, exact expressions for tight lower bounds as well as high SNR approximations of channel capacity of the considered scenario were presented. For both OP and channel capacity, with different APs, effective power allocation (PA) schemes under different constraints were given to optimize the system performance. Extensive simulations were carried out to verify the analytical results and to demonstrate the impact of channel asymmetry on the system performance.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Rate-Aware Two-Way Relaying for Low-Cost Ship-to-Ship Communications (저비용 선박간 통신을 위한 전송률 인지 양방향 릴레이 기법)

  • Wang, Jinsoo;Kim, Sun Yong;Jeong, Min-A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.651-659
    • /
    • 2014
  • In this paper, we consider a two way relay network for ship-to-ship communications in a fleet, where two communicating ships exchange the information with the help of a multi-antenna relay ship. For the network, we propose a rate-aware three-phase analog network coding to improve the reliability of the information exchange with asymmetric rates. The proposed scheme allows low-complex implementation of the relay without channel estimation by generating an improved analog network coded signal with the orthogonally received signals from two ships by using only the received signal power at each antenna. In addition, the proposed scheme reduces outages in the data exchange at asymmetric rates by adopting a rate-aware relay power allocation, which is confirmed by evaluating the outage performance via simulation.

Performance of Network Coding with Best Relay Selection in Fading Channels (페이딩 채널에서 최선 릴레이 선택을 갖는 네트워크 코딩의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.193-200
    • /
    • 2013
  • Recently, network coding has been actively studied to increase the spectral efficiency of two-way relay wireless channels such as cellular systems as well as broadcasting systems. In this paper, we derive the average transmission capacity and the outage probability of a network coding system, which utilizes two-way data transmission via the best relay rather than multiple relays. Since the data unbalance between the forward and the reverse link in two-way communication systems exists, we include the asymmetric link as well as the symmetric link in the analysis. It is noticed that the space diversity gain increases as the increase of the number of relays. Also we obtain 11.4 dB signal-to-noise ratio (SNR) gain with 9 relays compared to that with single relay in symmetrical link at the given conditions. In asymmetrical links, we denotes that the outage probability is more sensitive to the number of relays rather than data unbalance between the links.

Spectrum Hole Utilization in Cognitive Two-way Relaying Networks

  • Gao, Yuan;Zhu, Changping;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.890-910
    • /
    • 2014
  • This paper investigates the spectrum hole utilization of cooperative schemes for the two-way relaying model in order to improve the utilization efficiency of limited spectrum holes in cognitive radio networks with imperfect spectrum sensing. We propose two specific bidirectional secondary data transmission (BSDT) schemes with two-step and three-step two-way relaying models, i.e., two-BSDT and three-BSDT schemes, where the spectrum sensing and the secondary data transmission are jointly designed. In the proposed cooperative schemes, the best two-way relay channel between two secondary users is selected from a group of secondary users serving as cognitive relays and assists the bi-directional communication between the two secondary users without a direct link. The closed-form asymptotic expressions for outage probabilities of the two schemes are derived with a primary user protection constraint over Rayleigh fading channels. Based on the derived outage probabilities, the spectrum hole utilization is calculated to evaluate the percentage of spectrum holes used by the two secondary users for their successful information exchange without channel outage. Numerical results show that the spectrum hole utilization depends on the spectrum sensing overhead and the channel gain from a primary user to secondary users. Additionally, we compare the spectrum hole utilization of the two schemes as the varying of secondary signal to noise ratio, the number of cognitive relays, and symmetric and asymmetric channels.

Modulation Scheme for Network-coded Bi-directional Relaying over an Asymmetric Channel (양방향 비대칭 채널에서 네트워크 부호화를 위한 변조 방식)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.97-109
    • /
    • 2012
  • In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when $E_b/N_0$ is equal to $10^{-2}$, while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.