• Title/Summary/Keyword: Asymmetric crack growth

Search Result 8, Processing Time 0.018 seconds

Analysis of fatigue crack growth behavior in composite-repaired aluminum plate (복합재 패치로 한쪽 면을 보강한 평판의 균열선단 진전거동 해석)

  • Lee Woo-Yong;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.241-245
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of-plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from previous studies. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

  • PDF

Fracture Behavior of a Ductile Layer Sandwiched by Stiff Substrates;Finite Element Analysis (강성모재에 끼워진 얇은 연성층의 파괴거동;유한요소해석)

  • Kim, Dong-Hak;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2078-2086
    • /
    • 1999
  • Fracture behaviors of an interface crack in a ductile layer sandwiched by rigid substrates are analyzed by finite element method. Several fracture mechanisms and the corresponding criteria are examined. And the crack growth behavior and fracture toughness are predicted. As the results, various crack growth procedures such as the crack jump to the other interface on the opposite side, the creation of a new crack far from the initial crack front, and the asymmetric relation of fracture toughness vs. mode mixity ($J_c$-$\Phi$) can be successfully explained.

Analysis of fatigue crack growth behavior in composite-repaired aluminum place (복합재 패치 보강 평판의 균열선단 진전거동 해석)

  • 이우용;이정주
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.68-73
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of$.$plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from Previous studies. Therefore, for the accurate investigation of fatigue behavior, it is necessary to predict the actual crack front evolution and take it into consideration in the analysis. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-Reinforced Composites: Study on Asymmetrically Loading State (섬유강화 복합재의 동적 취성 파괴현상 규명을 위한 비국부 페리다이나믹스 해석법 개발: 비대칭 하중 연구)

  • Ha, Youn Doh;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2012
  • In this paper a computational method for a homogenized peridynamics description of unidirectional fiber-reinforced composites is presented. For these materials, dynamic brittle fracture and damage are simulated with the proposed peridynamic model. Compared with observations from dynamic experiments by Coker et al.(2001), the peridynamic computational model can reproduce various characteristics of dynamic fracture and supersonic or intersonic crack growth in asymmetrically loaded unidirectional fiber-reinforced composite plates. Also we analyze the same model in the symmetric loading condition and figure out that the asymmetric loading leads to a much higher propagation speed. Consistent results have been reported in the experiments.

Evaluation Method of Adhesive Fracture Toughness Based on Double Cantilever Beam (DCB) Tests Including Residual Thermal Stresses

  • Yokozeki, Tomohiro;Ogasawara, Toshio
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.301-317
    • /
    • 2008
  • The energy release rate associated with crack growth in adhesive double cantilever beam (DCB) specimens, including the effect of residual stresses, was formulated using beam theory. Because of the rotation of the asymmetric arms in the adhesive DCB specimens due to temperature change, it is necessary to correct the evaluated fracture toughness of the DCB specimens, specifically in the case of a large temperature change. This study shows that the difference between the true toughness and an apparent toughness due to the consequence of ignoring residual stresses can be calculated for a given specimen geometry and thermo-mechanical properties (e.g. coefficient of thermal expansion). The calculated difference in the energy release rates based on the present correction method is compared with that from FEM in order to verify the present correction method. The residual stress effects on the evaluation of the adhesive fracture toughness are discussed.

Characterization of Alpha-Ga2O3 Template Grown by Halide Vapor Phase Epitaxy (HVPE 방법으로 성장한 Alpha-Ga2O3의 특성 분석)

  • Son, Hoki;Ra, Yong-Ho;Lee, Young-Jin;Lee, Mi-Jai;Kim, Jin-Ho;Hwang, Jonghee;Kim, Sun Woog;Lim, Tae-Young;Jeon, Dae-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.357-361
    • /
    • 2018
  • We demonstrated a crack-free ${\alpha}-Ga_2O_3$ on sapphire substrate by horizontal halide vapor phase epitaxy (HVPE). Oxygen-and gallium chloride-synthesized Ga metal and HCl were used as the precursors, and $N_2$ was used as the carrier gas. The HCl flow and growth temperature were controlled in the ranges of 10~30 sccm and $450{\sim}490^{\circ}C$, respectively. The surface of ${\alpha}-Ga_2O_3$ template grown at $470^{\circ}C$ was flat and the root-mean-square (RMS) roughness was ~2 nm. The full width at half maximum (FWHM) values for the symmetric-plane diffractions, were as small as 50 arcsec and those for the asymmetric-plane diffractions were as high as 1,800 arcsec. The crystal quality of ${\alpha}-Ga_2O_3$ on sapphire can be controlled by varying the HCl flow rate and growth temperature.

A study on the brownish ring of quartz glass crucible for silicon single crystal ingot (실리콘 단결정 잉곳용 석영유리 도가니의 brownish ring에 대한 연구)

  • Jung, YoonSung;Choi, Jae Ho;Min, Kyung Won;Byun, Young Min;Im, Won Bin;Noh, Sung-Hun;Kang, Nam-Hun;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.115-120
    • /
    • 2022
  • A brown ring (hereinafter referred to as BR) on the inner surface of a quartz glass crucible used in the manufacturing process of a silicon ingot for semiconductor wafers was studied. BR is 20~30 ㎛ in size and has an asymmetric brown ring shape. The size and distribution of BR were different depending on the crucible location, and the size and distribution of BR were the largest and most abundant in the round part with the highest crucible temperature during Si ingot growth. BR contains cristobalite, which has a higher coefficient of thermal expansion than quartz glass, so it is considered that surface cracks appear. The color development of BR and pin holes are presumed to be due to oxygen vacancies.