DOI QR코드

DOI QR Code

Characterization of Alpha-Ga2O3 Template Grown by Halide Vapor Phase Epitaxy

HVPE 방법으로 성장한 Alpha-Ga2O3의 특성 분석

  • Son, Hoki (Korea Institute of Ceramic Engineering & Technology) ;
  • Ra, Yong-Ho (Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Young-Jin (Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Sun Woog (Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Korea Institute of Ceramic Engineering & Technology)
  • Received : 2018.03.07
  • Accepted : 2018.04.23
  • Published : 2018.09.01

Abstract

We demonstrated a crack-free ${\alpha}-Ga_2O_3$ on sapphire substrate by horizontal halide vapor phase epitaxy (HVPE). Oxygen-and gallium chloride-synthesized Ga metal and HCl were used as the precursors, and $N_2$ was used as the carrier gas. The HCl flow and growth temperature were controlled in the ranges of 10~30 sccm and $450{\sim}490^{\circ}C$, respectively. The surface of ${\alpha}-Ga_2O_3$ template grown at $470^{\circ}C$ was flat and the root-mean-square (RMS) roughness was ~2 nm. The full width at half maximum (FWHM) values for the symmetric-plane diffractions, were as small as 50 arcsec and those for the asymmetric-plane diffractions were as high as 1,800 arcsec. The crystal quality of ${\alpha}-Ga_2O_3$ on sapphire can be controlled by varying the HCl flow rate and growth temperature.

Keywords

References

  1. K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys., 51, 020201 (2012). [DOI: https://doi.org/10.1143/JJAP.51.020201]
  2. D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, Mater. Lett., 164, 364 (2016). [DOI: https://doi.org/10.1016/j.matlet.2015.11.001]
  3. S. C. Vanithakumari and K. K. Nanda, Adv. Mater., 21, 3581 (2009). [DOI: https://doi.org/10.1002/adma.200900072]
  4. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, Opt. Mater. Express, 4, 1067 (2014). [DOI: https://doi.org/10.1364/OME.4.001067]
  5. C. Jin, S. Park, H. Kim, and C. Lee, Sens. Actuators, B, 161, 223 (2012). [DOI: https://doi.org/10.1016/j.snb.2011.10.023]
  6. K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, and S. Yamakoshi. Appl. Phys. Express, 5, 035502 (2012). [DOI: https://doi.org/10.1143/APEX.5.035502]
  7. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]
  8. M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, Jpn. J. Appl. Phys., 45, 8639 (2006). [DOI: https://doi.org/10.1143/JJAP.45.8639]
  9. K. Akaiwa, K. Kaneko, K. Ichino, and S. Fujita, Jpn. J. Appl. Phys., 55, 1202BA (2016). [DOI: https://doi.org/10.7567/jjap.55.1202ba]
  10. D. Shinohara and S. Fujita, Jpn. J. Appl. Phys., 47, 7311 (2008). [DOI: https://doi.org/10.1143/JJAP.47.7311]
  11. A. L. Patterson, Phys. Rev., 56, 978 (1939). [DOI: https://doi.org/10.1103/PhysRev.56.978]
  12. J. Bai, T. Wang, P. J. Parbrook, K. B. Lee, and A. G. Cullis, J. Cryst. Growth, 282, 290 (2005). [DOI: https://doi.org/10.1016/j.jcrysgro.2005.05.023]
  13. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang, and Y. Zhou, Mater. Lett., 114, 26 (2014). [DOI: https://doi.org/10.1016/j.matlet.2013.09.096]