• Title/Summary/Keyword: Asymmetric capacitor

Search Result 43, Processing Time 0.023 seconds

Modeling, Analysis, and Enhanced Control of Modular Multilevel Converters with Asymmetric Arm Impedance for HVDC Applications

  • Dong, Peng;Lyu, Jing;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1683-1696
    • /
    • 2018
  • Under the conventional control strategy, the asymmetry of arm impedances may result in the poor operating performance of modular multilevel converters (MMCs). For example, fundamental frequency oscillation and double frequency components may occur in the dc and ac sides, respectively; and submodule (SM) capacitor voltages among the arms may not be balanced. This study presents an enhanced control strategy to deal with these problems. A mathematical model of an MMC with asymmetric arm impedance is first established. The causes for the above phenomena are analyzed on the basis of the model. Subsequently, an enhanced current control with five integrated proportional integral resonant regulators is designed to protect the ac and dc terminal behavior of converters from asymmetric arm impedances. Furthermore, an enhanced capacitor voltage control is designed to balance the capacitor voltage among the arms with high efficiency and to decouple the ac side control, dc side control, and capacitor voltage balance control among the arms. The accuracy of the theoretical analysis and the effectiveness of the proposed enhanced control strategy are verified through simulation and experimental results.

A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control (비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

Electrochemical Characteristics of Hybrid Capacitor and Pulse Performance of Hybrid Capacitor / Li-ion Battery (Hybrid Capacitor의 전기화학적 특성 및 Hybrid Capacitor / Li-ion Battery의 펄스 방전 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1133-1138
    • /
    • 2005
  • In this study, we have prepared, as the pluse power source, a commercially supplied Li-ion battery with a capacity of 700 mAh and AC resistivity of 60 md at 1 kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected hybrid capacitor/Li-ion battery source. The nonaqueous asymmetric hybrid capacitors constituted with each stack number of pairs composed of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The 10 stacked hybrid capacitor, which was charged and discharged at a constant current at 0.25 $mA/cm^2$ between 3 and 4.3 V, has exhibited the capacitance of 108F and the lowest equivalent series resistance was 32 $m{\Omega}$ at 1 kHz. On the other hand, the enhanced run time of Li-ion battery assisted by the hybrid capacitor was obtained with increasing of current density and pulse width in Pulse mode. The best improvement, $84\;\%$ for hybrid capacitor/Li-ion battery was obtained in the condition of a 7C-rate pulse (100 msec)/0.5C-rate standby/$10\;\%$ duty cycle.

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

The Electric Characteristics of Asymmetric Hybrid Supercapacitor Modules with Li4Ti5O11 Electrode (Li4Ti5O11 전극을 이용한 비대칭 하이브리드 슈퍼커패시터 전기적 모듈 특성)

  • Maeng, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.357-362
    • /
    • 2017
  • Among the lithium metal oxides for asymmetric hybrid supercapacitor, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. The pulverized LTO powder was observed to show the enhanced capacity from 120 mAh/g to 156 mAh/g at C-rate (10, 100 C). Hybrid supercapacitor module(48V, 416F) was fabricated using an asymmetric hybrid capacitor with a capacitance of 7500F. As a result of the measurement of C-rate characteristics, the module shows that the discharge time is drastically reduced at more than 50C, and the ESR and voltage drop characteristics are increased. The energy density and power density were reduced under high C-rate conditions. When designing asymmetric hybrid supercapacitor module, the C-rate and ESR should be considered As a result of measuring the 5 kw UPS, it was discharged at the current of 116A~170A during the discharge in the voltage range of 48V~30V, and the compensation time at discharge was measured to be about 33.2s. Experimental results show that it can be applied to applications related to stabilization of power quality by applying hybrid supercapacitor module.

A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System (태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.

Step-up Switched Capacitor Multilevel Inverter with a Cascaded Structure in Asymmetric DC Source Configuration

  • Roy, Tapas;Bhattacharjee, Bidrohi;Sadhu, Pradip Kumar;Dasgupta, Abhijit;Mohapatra, Srikanta
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1051-1066
    • /
    • 2018
  • This study presents a novel step-up switched capacitor multilevel inverter (SCMLI) structure. The proposed structure comprises 2 unequal DC voltage sources, 4 capacitors, and 14 unidirectional power switches. It can synthesize 21 output voltage levels. The important features of the proposed topology are its self-voltage boosting and inherent capacitor voltage balancing capabilities. Furthermore, a cascaded structure of the proposed SCMLI with an asymmetric DC voltage source configuration is presented. The proposed topology and its cascaded structure are compared with conventional and other recently developed topologies in terms of different aspects, such as the required components to produce a specific number of output voltage levels, the total standing voltage (TSV) and peak inverse voltage of the structure, and the maximum number of switches in the conducting path. Furthermore, a cost function is developed to verify the cost-effectiveness of the proposed topology with respect to other topologies. The TSV of the proposed topology is significantly lower than those of other topologies. Moreover, the developed topology is cost-effective compared with other topologies. A detailed operating principle, power loss analysis, and selection procedure for switched capacitors are presented for the proposed SCMLI structure. Extensive simulation and experimental studies of a 21-level inverter structure prove the effectiveness and merits of the proposed SCMLI.

Characteristics of high energy density hybrid capacitor using metal oxide electrode (금속산화물 전극을 사용한 고 에너지밀도 하이브리드 커패시터 특성)

  • Yoon, Hong-Jin;Shin, Yoon-Sung;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The electrochemical performances of an asymmetric hybrid capacitor were investigated using $LiFePO_4$ as the positive electrode and active carbon fibers(ACF) as the negative electrode. The electrochemical behaviors of a nonaqueous hybrid capacitor were characterized by constant current charge/discharge test. The specific capacitance using $LiFePO_4$/ACF electrode turned out to be $0.87F/cm^2$ and the unit cell showed excellent cycling performance. This hybrid capacitor was able to deliver a specific energy as high as 178 Wh/kg at a specific power of 1,068 W/kg.

Low Power Digital Logic Gate Circuits Based on N-Channel Oxide TFTs (N-Channel 산화물 TFT 기반의 저소비전력 논리 게이트 회로)

  • Ren, Tao;Park, Kee-Chan;Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Low-power logic gates, i.e. inverter, NAND, and NOR, are proposed employing only n-channel oxide thin film transistors (TFTs). The proposed circuits were designed to prevent the pull-up and pull-down switches from being turned on simultaneously by using asymmetric feed-through and bootstrapping, thereby exhibited same output voltage swing as the input signal and no static current. The inverter is composed of 5 TFTs and 2 capacitors. The NAND and the NOR gates consist of 10 TFTs and 4 capacitors respectively. The operations of the logic gates were confirmed successfully by SPICE simulation using oxide TFT model.

A Hybrid Electrochemical Capacitor Using Aqueous Electrolyte (수용성 전해액을 사용하는 하이브리드 전기화학 축전기)

  • Kim, Jong-Huy;Jin, Chang-Soo;Shin, Kyoung-Hee;Lee, Mi-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.153-157
    • /
    • 2003
  • A hybrid electrochemical capacitor having both characteristics of electric double layer capacitance and pseudo-capacitance was studied throughout cell tests. Asymmetric electrodes with $Ni(OH)_2/activated$ carbon based positive electrode and activated carbon based negative electrode were used in preparing test cells of $5\times5cm^2$. Cyclic voltammetry measurements and impedance measurements were conducted to understand electrochemical behavior of each electrode. To find an optimal mass ratio of negative to positive electrode, charge-discharge cycle tests were also performed.