• Title/Summary/Keyword: Assumed modes

Search Result 228, Processing Time 0.024 seconds

Elastic Buckling Analysis of Laminated Composite Plates with Embedded Square Delamination Using an Enhanced Assumed Strain Solid Element (강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석)

  • Park, Dae-Yong;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • Delamination reduces an elastic buckling load of the laminated composite structures and lead to global structural failure at loads below the design level. Therefore, the problem of the delamination buckling of laminated composite structures has generated significant research interest and has been the subject of many theoretical and experimental investigations. However, questions still remain regarding a complete understanding and details of the phenomena involved. In this paper an efficient finite element model is presented for analyzing the elastic buckling behavior of laminated composite plates with square embedded delamination using a solid element based on a three-dimensional theory. The solid finite element, named by EAS-SOLID8, based on an enhanced assumed strain method is developed. The study for elastic buckling behavior of laminated composite plates with embedded square delaminations are focused on various parameters, such as support condition and width-to-thickness ratio. Both graphs and buckling modes in this paper are good guide for design of the laminated composite plates with embedded square delamination.

  • PDF

A Method for Calculation of Compressive Strength of a One-Sided Stiffened Plate (편면 보강판의 압축강도 해석을 위한 한 방법)

  • C.D. Jang;S.I. Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, a method to overcome inefficiency of the finite element method in the calculation of compressive strength of one-sided stiffened plates, is proposed. In this method the collapse modes of stiffened plates are assumed as follows. a) Overall buckling $\rightarrow$ Overall collapse b) Local buckling $\rightarrow$ Overall collapse c) Local buckling $\rightarrow$ Local collapse In each collapse mode, shape of deflection is assumed, and then elastic large deformation analysis based on the Rayleigh-Ritz method is carried out. One-sided stiffening effect is considered by taking into account of the moment due to eccentricity. Plastic analysis by assuming hinge lines is also carried out. The ultimate strength of a stiffened plate is obtained as the point of intersection of the elastic analysis curve and the plastic one. From this study, it is concluded that the angles between the plastic hinge lines in plastic collapse mode are determined as the ones which give the minimum collapse load, and these angles are different from the ones assumed in the previous studies. Minimum stiffness ratios can also be calculated. Calculated results according to this method show good agreements with the results by the finite element method.

  • PDF

A study on sound radiation from isotropic plates stiffened by unsymmetrical beams (비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, Jong-Tye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

Two Dimensional Vibration Analysis of Cranck Shaft by Using Transfer Matrix Method (전달매트릭스법을 이용한 크랭크축의 2차원 진동해석)

  • 김광식;오재응;김만복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.455-462
    • /
    • 1991
  • This paper present an analysis method of crankshaft of four cylinder internal combustion engine for studying dynamic characteristics of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, natural modes and transfer functions of crank shaft were investigated based upon the Timosenko beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the experimental results.

Reliability Analysis of the Spur Gear with Accelerated Life Testing Model (가속수명시험 모델에 따른 평기어의 신뢰성 해석)

  • Kim, Chul-Su;Kwon, Yeo-Hyoun;Kim, Joo-Hyung;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

Efficient Aerodynamic Computation of a Wing Model Considering Body Effect for the Aeroelastic Application

  • Lee, Seung-Jun;Im, Dong-Kyun;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • The typical aeroelastic analysis for a complex configuration such as a complete aircraft was done using the aerodynamic results of the wing and the structural modes of a complete aircraft; that is, the aerodynamics of a wing of a complete aircraft is assumed to be not much influenced by the body shape. Nevertheless, the body shape can cause a distortion of aerodynamic pressure on the wing surface and it is necessary to investigate the body effect in flutter analysis. In this reseasrch, MGM inverse design method is applied to include the body effect of a wing-body model which disturbs the pressure distribution on the wing surface.

Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle (배플을 갖는 원통형 유체저장 탱크의 연성진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

Numerical Analysis on External Strengthening Effects in Aged Structures (사용중인 구조물의 보강효과에 대한 해석적 연구)

  • 신승교;임윤묵;김문겸;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.