An, Fengwei;Mihara, Keisuke;Yamasaki, Shogo;Chen, Lei;Mattausch, Hans Jurgen
JSTS:Journal of Semiconductor Technology and Science
/
제16권4호
/
pp.405-414
/
2016
IC-implementations provide high performance for solving the high computational cost of pattern matching but have relative low flexibility for satisfying different applications. In this paper, we report an associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern matching. The designed architecture features reconfigurable vector-component parallelism enabled by programmable switching circuits between vector components, and a dedicated majority vote circuit. In addition, the main time-consuming part of KNN is solved by a clock mapping concept based weighted frequency dividers that drastically reduce the in principle exponential increase of the worst-case search-clock number with the bit width of vector components to only a linear increase. A test chip in 180 nm CMOS technology, which has 32 rows, 8 parallel 8-bit vector-components in each row, consumes altogether in peak 61.4 mW and only 11.9 mW for nearest squared Euclidean distance search (at 45.58 MHz and 1.8 V).
본 논문에서는 단층 퍼센트론 모델의 학습기능과 신경회로망 형성메모리의 오류정정 능력이 서로 보완적으로 결합된 새로운 적응 패턴인식 시스템의 광학적구현을 실현하였다. 여기서, 단층 퍼센트론 모델은 2차원 LCTV 공간 광변조기를 이용하여 편광인코딩방법과 비전형 양자화 방법으로 구현하였으며, Hopfield 연장메모리는 2차원 모델로 황장하고multifocus holoens를 이용하여 광학적으로 구현하였다. 아리비아 숫자 짝.홀수 판별에 고나한 광학적 실험 결과, 오류 및 부분 입력에 대한 정확한 패턴 분류가 됨을 확인함으로서, 본 논문에서 제시한 새로운 적응 광 패턴인식 시스템이 실제로 영상처리, 패턴인식 등의 분야에서 그 응용 가능성을 제시하였다.
대부분의 포탈영상이 그에 상응하는 시뮬레이터 영상을 참조 영상으로 하여 방사선치료 계획을 수행하고 있다. 이것은 선형가속기의 높은 에너지 X선으로서 얻어지는 포탈 영상의 물리적 특성 때문에, 구조적으로 대단히 불량한 포탈 영상의 개선과 잃어버린 영상 정보의 복원에 시뮬레이터 영상 자체에서의 영상정보를 이용할 수 있다는 가능성을 보여주고 있는 것이다. 본 연구에서는 최대 퍼지 엔트로피를 평가함수로 이용한 유전자 알고리듬을 사용하여 영상에서의 퍼지 영역을 자동적으로 결정하고, 그것을 멤버쉽 함수에서 적용하여 퍼지영상 개선 기법으로서 포탈 영상과 시뮬레이터 영상을 개선한 후, 잡음이 중첩된 시뮬레이터 영상들로서 연관기억장치를 학습시키고 여기에 퍼지 방법으로 개선시킨 포탈 영상을 입력하여 기존의 영상기법으로 처리된 영상보다 좋은 포탈 영상을 얻을 수 있었다.
현대사회에서 추천 서비스는 클라이언트-서버 기반의 인터넷 서비스에서 소셜 네트워킹으로 변화되고 있다. 특히 최근에는 크라우드소싱과 소셜 네트워킹을 통하여 사용자에게 개인화 추천을 서비스하고 있다. 소셜 네트워크 기반 시스템은 메모리와 모델 기반 협력적 필터링을 이용한 추천 서비스 제공 방식과 목적에 따라 분류할 수 있다. 이에 본 논문에서는 소셜 네트워크 기반의 {사용자-연관 디자인} 행렬을 이용한 감성 디자인 추천을 제안한다. 제안하는 방법은 소셜 네트워크 기반에서 {사용자-연관 디자인} 행렬을 구성하고 메모리 기반 협력적 필터링을 이용하여 감성 디자인을 추천한다. 제안한 방법의 성능평가는 정확도와 재현율 검증을 진행한다. 정확도의 검증은 소셜 네트워크 기반의 추천 적용유무에 따른 F-measure를 사용한다.
Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.
신경회로망의 동작과 정보처리 능력 등에 관하여 살펴보고자 할 때, 신경회로망의 구성 요소를 어떻게 모델화 할 것인가는 중요한 문제이다. 소자의 응답특성이 바뀜에 따른 특성의 변화, 결합강도 및 적응규칙이 바뀜으로써 회로망 전체의 다이나믹스가 바뀌는 모습, 소자 상호간의 결합 형태에 따른 정보처리 능력의 변화 등과 같은 신경회로망이 가진 다양한 정보처리 능력을 밝히는 것은 병렬 정보처리의 메카니즘을 이해하는 문제와도 일맥상통하고 있다. 따라서 이러한 문제들에 대하여 신경회로망의 정보처리 능력을 해석적으로 평가하는 것은 병렬분산 정보처리의 본질을 밝힌다는 측면에서 중요하게 여겨진다. 따라서 본 논문에서는 신경회로망을 구성하는 구성요소의 변화, 그 가운데에서도 특히 소자의 히스테리시스 특성이 신경망의 계열연상능력에 미치는 영향에 대한 이론적 해석결과에 대하여 기술한다.
플래시 메모리는 저전력, 저렴한 가격, 그리고 대용량저장매체로 그 중요성 및 수요에 대한 요구가 증대되고 있다. 이 연구는 하드디스크 대용을 위한 플래시 메모리 시스템을 구현하기 위하여 공간적 스마트 버퍼시스템을 통한 적극적인 공간적 지역성의 동적 페칭으로 고성능 플래시 메모리 설계에 목적이 있다. 제안된 플래시 메모리 시스템은 시간적 지역성을 위한 희생 버퍼, 공간적 지역성을 위한 공간적 버퍼 그리고 동적 페칭 유닛으로 이루어져 있다. 우리는 적극적인 동적 페칭을 위해 새로운 페칭 알고리즘을 제안한다. 즉, 새로운 구조와 새로운 알고리즘을 통하여 하드디스크 대용의 플래시 메모리 사용시 고려되어져 야 할 플래시 메모리의 단점을 줄여 범용 및 미디어 응용군에서 모두 고성능 효과를 이룰 수 있었다. 시뮬레이션 결과평균 접근실패율의 경우 미디어 응용군에 대해 기존의 스마트 버퍼시스템에 비해 25%감소 효과를 얻을 수 있었고, 평균 메모리 접근 시간의 경우스마트 버퍼시스템에 비해 35% 감소 효과를 얻을 수 있었다. 일반 범용 응용군에서도 30% 이상의 향상된 평균 메모리 접근 시간을 보였다.
The global elderly population, aged 65 and over, reached approximately 10% in 2020, and this proportion is expected to continue rising. Therefore, the prevalence of neurodegenerative diseases such as Parkinson's disease (PD), which are characterized by declining memory capabilities, is anticipated to increase. In a previous study, we successfully restored the diminished memory capabilities in a fruit fly model of PD by administering an omija extract. To identify functional ingredients that can enhance memory akin to the effects of the omija extract, we conducted screenings by administering halophyte extracts to the PD model. Halophytes are plants that thrive in high-salt environments, and given Korea's geographic proximity to the sea on three sides, it serves as an optimal hub for the utilization of these plants. Upon examining the effects of the oral administration of 12 halophyte extracts, Salicornia herbacea and Calystegia soldanella emerged as potential candidates for ameliorating memory loss in PD model flies. Moreover, our findings suggested that C. soldanella, but not S. herbacea, can mitigate oxidative stress in DJ-1β mutants.
본 논문에서는 양방향 연상 기능을 효과적으로 수행할 수 있는 BAM(bidirectional associative memory)의 설계방법론을 제안한다. 먼저 BAM의 성질에 관한 이론적 고찰을 바탕으로 하여 주어진 패턴 쌍을 안정하게 그리고 높은 오차수정율(error correction ratio)을 가지고 저장할 수 있는 BAM을 찾는 문제를 제약조건이 있는 최적화 문제로 공식화한다 다음과정에서 이 최적화 문제를 GEVP(generalized eigenvalue problem)로 변환함으로써 최근에 개발된 내부점 방법(interior point method)을 통하여 해가 구해질 수 있도록 한다. 제안된 설계 방법론의 적용가능성은 예제를 통해 확인된다.
인간 두뇌의 연상과 기억 작용의 모델링을 통한 구현의 일부분으로, 본 논문에서는 Hebb 의 학습방법과 non-cloning template를 사용하여 discrete-time cellular neural networks의 연상메모리 기능을 구현한다. 본 논문에서 사용된 학습방법은 각 셀의 인접한 셀과의 연결상태에 따라 하중값 메트릭스를 구현한다. 이러한 방법은 새로운 패턴의 추가 학습과 삭제가 쉽고, 또한 쉽게 구현 할 수 있는 장점이 있다. 이 방법으로 모의 실험에서는 교통표지판의 분류에 사용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.