• Title/Summary/Keyword: Assist motor

Search Result 77, Processing Time 0.026 seconds

Improvement and Evaluation of Portable Electrical Ventilator (전기 구동 이동형 인공호흡기의 개선 및 평가)

  • Ko, S.H.;Choi, N.B.;Kim, D.W.;Lee, S.H.;Oh, Y.S.;Lee, K.H.;Lee, S.H.;Lee, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.149-150
    • /
    • 1998
  • We have developed electrically driven portable ventilator and evaluated through in-vitro and in-vivo test. Ventilator is consists of DC servo motor(Kollmorgen), piston and ball screw, sensing system, power system with backup battery and micro controller. For the precise and stable volume control, the dynamic brake and the PI speed control loop is employed. The main functions are as followers; control, control+sigh, control/assist, control/assist+sigh and SIMV. The animal experiment showed stable performance when it is operated in control mode.

  • PDF

Development of Standing and Gait Assistive Wheelchair (기립 및 보행 보조 휠체어의 개발)

  • Song, Chan Yang;Yoon, Hyo Joon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.587-592
    • /
    • 2013
  • Until recently, the primary users of wheelchairs were people with lower body disabilities. However, the number of patients recovering from accidents or surgery, as well as the number of elderly people using wheelchairs, is constantly increasing. This study examined the design and manufacture of standing and gait assist wheelchairs that assist temporary gait disturbed patients to take rehabilitation training and elderly people to engage in walking exercise. A kinematic analysis was used to select a drive motor and design a four-bar linkage mechanism for lifting the backrest vertically. Using a multibody dynamic simulation, detailed design was performed taking into consideration the spatial motion and partial interference, and the necessary push force and stroke of the linear actuator were also calculated. To ensure structural safety, the von-Mises equivalent stresses of the upper and lower brackets of the linear actuator were verified through a finite element analysis. The manufactured wheelchair was shown to operate successfully as intended, using the developed controller for the drive motors and linear actuator.

Development of Ankle Power Assistive Robot using Pneumatic Muscle (공압근육을 사용한 발목근력보조로봇의 개발)

  • Kim, Chang-Soon;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.771-782
    • /
    • 2017
  • This paper describes the development of a wearable robot to assist ankle power for the elderly. Previously developed wearable robots have generally used motors and gears to assist muscle power during walking. However, the combination of motor and reduction gear is heavy and has limitations on the simultaneous control of stiffness and torque due to the friction of the gear reducer unlike human muscles. Therefore, in this study, Mckibben pneumatic muscle, which is lighter, safer, and more powerful than an electric motor with gear, was used to assist ankle joint. Antagonistic actuation using a pair of pneumatic muscles assisted the power of the soleus muscles and tibialis anterior muscles used for the pitching motion of the ankle joint, and the model parameters of the antagonistic actuator were experimentally derived using a muscle test platform. To recognize the wearer's walking intention, foot load and ankle torque were calculated by measuring the pressure and the center of pressure of the foot using force and linear displacement sensors, and the stiffness and the torque of the pneumatic muscle joint were then controlled by the calculated ankle torque and foot load. Finally, the performance of the developed ankle power assistive robot was experimentally verified by measuring EMG signals during walking experiments on a treadmill.

Study on Power Distribution Algorithm in terms of Fuel Equivalent (등가 연료 관점에서의 동력 분배 알고리즘에 대한 연구)

  • Kim, Gyoungeun;Kim, Byeongwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.6
    • /
    • pp.583-591
    • /
    • 2015
  • In order to evaluate the performance of TAS applied to the hybrid vehicle of the soft belt driven, acceleration performance and fuel consumption performance is to be superior to the existing vehicle. The key components of belt driven TAS(Torque Assist System), such as the engine, the motor and the battery, The key components of the driven belt TAS, such as the engine, the motor, and the battery, have a significant impact on fuel consumption performance of the vehicle. Therefore, in order to improve the efficiency at the point of view based on the overall system, the study of the power distribution algorithm for controlling the main source powers is necessary. In this paper, we propose the power distribution algorithm, applied the homogeneous analysis method in terms of fuel equivalent, for minimizing the fuel consumption. We have confirmed that the proposed algorithm is contribute to improving the fuel consumption performance satisfied the constraints considering the vehicle status information and the required power through the control parameters to minimize the fuel consumption of the engine. The optimization process of the proposed driving strategy can reduce the trial and error in the research and development process and monitor the characteristics of the control parameter quickly and accurately. Therefore, it can be utilized as a way to derive the operational strategy to minimize the fuel consumption.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

Evaluation of gear reduction ratio for a 1.6 kW multi-purpose agricultural electric vehicle platform based on the workload data

  • Mohammod Ali;Md Rejaul Karim;Habineza Eliezel;Md Ashrafuzzaman Gulandaz;Md Razob Ali;Hyun-Seok Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.133-146
    • /
    • 2024
  • Selection of gear reduction ratio is essential for machine design to ensure suitable power and speed during agricultural operations. The goal of the study was to evaluate the gear reduction ratio for a 1.6 kW four-wheel-drive (4WD) multi-purpose agricultural electric vehicle platform using workload data under different off-road conditions. A data acquisition system was fabricated to collect workload (torque) of the vehicle acting on the gear shaft. Field tests were performed under three driving surfaces (asphalt, concrete, and grassland), payload operations (981, 2,942, and 4,903 N), and slope conditions (0 - 4°, 4 - 8°, and 8 - 12°), respectively. Commercial speed reduction gear phases were attached to the input shaft of the vehicle powertrain. The maximum required torque was recorded as 37.5 Nm at a 4,903 N load with 8 - 12° slope levels, and the minimum torque was 12.32 Nm at 0 - 4° slope levels with a 981 Nm load for a 4 km/h speed on asphalt, concrete, and grassland roads. Based on the operating load condition and motor torque and rotational speed (TN) curve, the minimum and maximum gear reduction ratios were chosen as 1 : 50 and 1 : 64, respectively. The selected motor satisfied power requirements by meeting all working torque criteria with the gear reduction ratios. The chosen motor with a gear reduction ratio of 1 : 50 was suitable to fit with the motor T-N curve, and produced the maximum speeds and loads needed for driving and off-road activities. The findings of the study would assist in choosing a suitable gear reduction ratio for electric vehicle multi-purpose field operations.

Stiffness Modeling of Toroidally-Wound BLDC Machine (환형권선 BLDC 전동기의 강성계수 모델링)

  • Lee, Hyun-Chu;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • Toroidally-wound brushless direct-current (BLOC) machines are compact, highly efficient, and can work across a large magnetic gap. For these reasons, they have been used in pumps, flywheel energy storage systems and left ventricular assist devices among others. The common feature of these systems is a spinning rotor supported by a set of (either mechanical or magnetic) bearings. From the view point of dynamics, it is desirable to increase the first critical speed of the rotor so that it can run at a higher operating speed. The first critical speed of the rotor is determined by the radial stiffnesses of the bearings and the rotor mass. The motor also affects the first critical speed if the rotor is displaced from the rotating center. In this paper, we analytically derive the flux density distribution in a toroidally-wound BLOC machine and also derive the negative stiffness of the motor, based on the assumption that the rotor displacement perturbs the flux density distribution linearly. The estimated negative stiffness is validated by finite element analyses.

Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation (위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선)

  • Park, Gui-Yeol;Hwang, Yo-Han;Heo, Nam;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.

Study of Validity and Interrater Reliability of Korean Version of the Peabody Developmental Motor Scale 2 (한글판 Peabody Developmental Motor Scale 2의 타당도와 검사자간 신뢰도 연구)

  • Lee, Ji-Ho;Kim, Kyeong-Mi;Chang, Moon-Young;Hong, Eunkyoung
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.17 no.3
    • /
    • pp.14-25
    • /
    • 2019
  • Objective : This study aims to verify the content validity and inter-rater reliability of the Korean version of the Peabody Developmental Motor Scale 2 (PDMS-2) and to identify the concurrent validity by comparing it with the Korean version of the Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). Methods : PDMS-2 was translated by the researcher and an eighth-year clinical occupational therapist. The content consistency of the Korean version of the PDMS-2 was verified by three professors with experience using it. After the verification of the content consistency of the PDMS-2 by the five clinical occupational therapists and the additional revision, the Korean version of the PDMS-2 was completed. The researcher and another occupational therapist evaluated the Korean version of PDMS-2 in 50 children and measured the inter-rater reliability. Concurrent validity was measured by comparing the results of the Korean version of PDMS-2 and Korean version of BOT-2. Results : The content consistency test showed overall agreement of mean 3.45, and the content understanding test showed a high level of understanding of mean 3.69. The inter-rater reliability and concurrent validity of the Korean version of the PDMS-2 showed a statistically significant correlation. Conclusion : The Korean version of the PDMS-2 showed high content understanding, reliability, and validity. It can assist clinicians and researchers who work in fields related to child treatment or development.

A Study of in-vitro Performances of the Intracardiac Axial Flow Pump (심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구)

  • 김동욱;삼전부호희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 1998
  • The intracardiac axial flow pump has been developed This device has several advantages: it fits well anatomically, its blood-contacting surface is small, and it is implanted as easily as an artificial heart valve replacement. The axial flow pump consists of an impeller and a motor, both of which are encased in a housing. Two types of impeller with 4 vanes and 6 vanes are used. Sealing of the motor shaft is achieved by means of a ferrofluidic seal. A flow of 5$\ell$/min was obtained at a differential pressure of 100mmHg with a motor speed of 7091rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm over 24 hours. The index of hemolysis was 0.056 with the 4-vane impeller and 0.214 with the 6-vane impeller. The intracardiac axial flow pump is a very promising circulatory support.

  • PDF