• Title/Summary/Keyword: Assembly Work

Search Result 517, Processing Time 0.032 seconds

Security Problem of National Major Facility's Parking Lot and its Improvement Method -Focused on Doonchi(Waterside) Parking Lot of National (국가중요시설의 주차장 보안의 문제점과 개선방안: 국회둔치주차장을 중심으로)

  • Lee, Sang-Hun;Lee, Sang-Yeol
    • Korean Security Journal
    • /
    • no.50
    • /
    • pp.61-87
    • /
    • 2017
  • National Assembly is a constitutional institution that is required to first consult the will of the people and it should do its effort continuously so that security of citizens using parking lot would be enhanced at the same time while improving parking service in order to increase customer satisfaction of the people. Under this recognition, in this study, Doonchi parking lot of National Assembly under consigned management was first reviewed in a perspective of criminal prevention through environmental design(CPTED) and particularly, fence installation and reinforcement work for securing 'territoriality' and operation of all round shooting camera and installation of No-trespassing warning board at entrance were suggested. Second, it was recommended to change independent control system in which CCTV security system of National Assembly Doonchi parking lot is operated separately from National Assembly safety situation room and integrate it with National Assembly safety situation room(revised to double safety system) and performance of CCTV camera was made to be increased to over 2m. In addition, video recording mode was converted to NVR mode for application to IP camera in the future and in order to avoid dead zone of security monitoring area and based on site inspection result, addition 3 places of newly installing CCTV were indicated. Third, it was recommended to introduce parking fare billing and management system through unmanned equipment in parking lot management and operation.(specialized management of professional parking service provider was reviewed). By doing so, risk of cash handling by charging personnel was removed by reducing current 7 working personnel to 3 and particularly, by converting parking lot management mode being operated temporarily from 9 A.M. to 9 P.M. at present to 24 hours operation mode and providing more specialized parking service, citizens visiting National Assembly were provided with convenience and image of National Assembly was also enhanced. This study was carried out in parallel with various literature and case studies, including data from the Office of the Defense Protection in the National Assembly.

  • PDF

Development of simulation-based ship production execution system(SPEXS) for a panel block assembly shop (판넬블록 생산관리를 위한 시뮬레이션 기반 조선생산실행시스템 개발)

  • Lee, Kwang-Kook;Kim, Young-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2313-2320
    • /
    • 2011
  • The management of a panel block shop in a shipyard is a complex process that entails the largest amount of work and in which many decisions are involved. Shipbuilders have considered the process as a bottleneck since every panel for every ship and offshore hull structure must be processed through the shop. In order to maximize process productivity, simulation-based ship production execution system(SPEXS) is proposed for panel block operations utilising discrete-event simulation and simulated annealing. An application of panel block assembly shop, called SPEX-Panel supports production planners by general dispatching rules and metaheuristics to make better scheduling decisions on the shop floor. In addition, the system will help increase productivity in the yard with continuous improvement.

Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System (자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현)

  • Ha, Young-Hoon;Woo, Sang-Bok;Ahn, Hyun-Sik;Hahn, Hyung-Sang;Park, Young-Jin
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF

Modular approach to Petri net modeling of flexible assembly system

  • Park, T.K.;Choi, B.K.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.436-443
    • /
    • 1992
  • Presented in the paper is a systematic approach to constructing a Petri net model of FAS (flexible assembly system). Petri net is widely used in modeling automated manufacturing systems. But, it found to be very difficult for an FA engineer to build a correct model of an FAS with Petri net symbols (ie, place, transition, and token) from the beginning. An automated manufacturing system in general is built from a set of "standard" hardware components. An FAS in particular is usually composed of assembly robots, work tables, conveyor lines, buffer storages, part feeders, etc. In the proposed modeling scheme, each type of standard resources is represented as a standard "module" which is a sub Petri net. Then, the model of a FAS can be conveniently constructed using the predefined modules the same way the FAS itself is built from the standard components. The network representation of a FAS is termed a JR-net (job resource relation net) which is easy to construct. This JR net is then mechanically converted to a formal Petri net (to simulate the behavior of the FAS). The proposed modeling scheme may easily be extended to the modeling of other types of automated manufacturing systems such as FMS and AS/RS.ch as FMS and AS/RS.

  • PDF

Basic Study on the Assembly Process Design of Curtain-wall System for Minimization of Carbon Emission

  • Yi, June-Seong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.648-663
    • /
    • 2012
  • With recent attempts to improve quality and productivity, the prefabrication manufacturing system has been occupying an increasing share of the construction area. To minimize site work, material is more frequently being produced and partially assembled at a plant, and then installed at a site. For this reason, the production process is being divided and the materials are being delivered to the site after passing through multiple plants. With these changes in the production process, the materials delivery plan is becoming an important management point. In particular, as road transportation using trucks has a 71 percent share of the domestic transportation market, selecting the proper transportation path is important when delivering materials and equipment to a site. But the management system at the project design phase to calculate the delivery cost by considering the production process of the pre-fab material and the $CO_2$ emission at the material delivery phase is currently lacking. This study suggests a process design model for assembly production of the pre-fab material and transportation logistics based on carbon emission. The suggested model can be helpful to optimize the location of the intermediate plant. It is expected to be utilized as a basic model at the project plan and design phase when subcontractors make decisions on items such as materials procurement, selecting the production method, and choosing the location of the assembly plant.

Prediction and Control of Welding Deformation for Panel Block Structure (평 블록 구조의 용접변형 예측 및 제어)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.95-99
    • /
    • 2008
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending welding residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. The validity of the prediction method must be also clarified through experiments. This paper proposes a simplified analysis method to predict the welding deformation of panel block structure. For this purpose, a simple prediction model for fillet welding deformations has been derived based on numerical and experimental results through the regression analysis. On the basis of these results, the simplified analysis method has been applied to some examples to show its validity.

The Utilization of Oleogels for Cosmetics (화장품에서의 올레오겔 이용)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.16-34
    • /
    • 2013
  • Oleogels may be defined as lipophilic liquid and solid mixtures. The solid lipid materials (oleogelators) with less than 10 wt.% can entrap bulk liquid oil by ways of the formation of network of oleogelators in the bulk oil. The oelogelators can be grouped into two: self-assembly system and crystal particles system. This article reviewed recent work on the formation of oleogels using various types of oleogelators. The fundamental aspects of the formation of lipid network are discussed with a special emphasis on crystal particle based oleogels. The potential applications of oleogels for cosmetics are also described.

Mixed-product flexible assembly line balancing based on a genetic algorithm (유전알고리듬에 기반을 둔 혼합제품 유연조립라인 밸런싱)

  • Song Won Seop;Kim Hyeong Su;Kim Yeo Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.43-54
    • /
    • 2005
  • A flexible assembly line (FAL) is a production system that assembles various parts in unidirectional flow line with many constraints and manufacturing flexibilities. In this research we deal with a FAL balancing problem with the objective of minimizing the maximum workload allocated to the stations. However, almost all the existing researches do not appropriately consider various constraints due to the problem complexity. Therefore, this study addresses a balancing problem of FAL with many constraints and manufacturing flexibilities, unlike the previous researches. We use a genetic algorithm (GA) to solve this problem. To apply GA to FAL. we suggest a genetic representation suitable for FAL balancing and devise evaluation method for individual's fitness and genetic operators specific to the problem, including efficient repair method for preserving solution feasibility. After we obtain a solution using the proposed GA. we use a heuristic method for reassigning some tasks of each product to one or more stations. This method can improve workload smoothness and raise work efficiency of each station. The proposed algorithm is compared and analyzed in terms of solution quality through computational experiments.

Eigenvalue Design Sensitivity Analysis To Redesign Spacer Grid Location In Nuclear Fuel Assembly (핵연료집합체 지지격자 위치결정을 위한 고유치 민감도해석)

  • 박남규;이성기;김형구;최기성;이준노;김재원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-709
    • /
    • 2002
  • The spacer grids in nuclear fuel assembly locate and align the fuel rods with respect to each other. They provide axial and lateral restraint against an excessive rod motion mainly caused by coolant flow. It is understood that each rod Is supported by multiple spacer grid. In such a case, it is important to determine spacer grid span so as to avoid resonance between the natural frequency of the fuel rods and excitation frequency. Actually dynamic characteristics of the fuel rods can be improved by assigning adequate spacer grid locations. When a dynamic performance of the structure is to be improved, design sensitivity analysis plays an important role as like many structural redesign problems. In this work, a shape design concept, different from conventional design, was applied to the problem. According to the theory shape can be a design parameter and optimal shape design can be found. This study concentrates on eigenvalue design sensitivity of the fuel rod supported by multiple spacer grids to determine optimal spacer grids positions.

  • PDF