• Title/Summary/Keyword: Assembly Design

Search Result 1,646, Processing Time 0.028 seconds

Development of a software based calibration system for automobile assembly system oriented AR (자동차 조립시스템 지향 AR을 위한 소프트웨어 기반의 캘리브레이션 시스템 개발)

  • Park, Jin-Woo;Park, Hong-Seok
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Many automobile manufacturers are doing experiment on manufacturing environments by using an augmented reality technology. However, system layout and process simulation by using the virtual reality technology have been performed actively more than by using the augmented reality technology in practical use so far. Existing automobile assembly by using the augmented reality requires the precise calibrating work after setting the robot because the existing augmented reality system for the automobile assembly system configuration does not include the end tip deflection and the robot joints deflection due to the heavy weight of product and gripper. Because the robot is used mostly at the automobile assembly, the deflection problem of the robot joint and the product in the existing augmented reality system need to be improved. Moreover camera lens calibration has to be performed precisely to use augmented reality. In order to improve this problem, this paper introduces a method of the software based calibration to apply the augmented reality effectively to the automobile assembly system. On the other hand, the camera lens calibration module and the direct compensation module of the virtual object displacement for the augmented reality were designed and implemented. Furthermore, the developed automobile assembly system oriented AR-system was verified by the practical test.

Spacer Grid Assembly with Sliding Fuel Rod Support (삽입 및 이동 가능한 연료봉 지지부의 지지격자 형상)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.843-850
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components of the nuclear fuel assembly of a Pressurized Water Reactor (PWR). A primary design requirement is that the fuel rod integrity be maintained by the spacer grid assembly during the operation of the reactor. In this study, we suggested a new spacer grid assembly having a fuel rod support, which is capable of sliding when the fuel rod vibrates due to flow-induced vibrations in the reactor. By adjusting the relative displacement between the fuel rod and its support, the proposed design will help in reducing fuel rod fretting damage.

Development of Simulation Model to Assembly Tolerance Design (조립 공차 설계를 위한 시뮬레이션 모델 개발)

  • 장현수
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.221-230
    • /
    • 2001
  • The assembly tolerance design methods have applied linear or nonlinear programming methods and used simulation method and search algorithms to optimize the tolerance allocation of each part in an assembly. However, those methods are only considered to the relationship between tolerance and manufacturing cost, which do not consider a quality loss cost for each part tolerance. In this paper, the integrated simulation model used genetic algorithm and the Monte-Carlo simulation method was developed for the allocation of the optimal tolerance considering the manufacturing cost and quality loss cost.

  • PDF

Contact Analysis on a Born-Holder Assembly for Wire Bonding (와이어 본더용 Horn-Holder Assembly의 접촉 해석)

  • Jang, Chang-Soo;Ahn, Geun-Sik;Kim, Young-Joon;Kwak, Dong-Ok;Boo, Seong-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2008-2017
    • /
    • 2002
  • Joint structure of a transducer horn-holder assembly fur a wire bonder was examined through FEM contact analysis. A three dimensional modeling and analysis was carried out to survey the internal physics of this structure and to prove the accuracy of a computation compared to a measurement. After validation, a simple two dimensional model was built fur various parametric study considering the efficiency and speed of the computation. Several factors such as boundary conditions, a modeling boundary, mesh density and so on, were considered to obtain consistency with three dimensional analysis. An arc angle and a position of each holder boss were chosen as design parameters. A design of experiment was applied to find out an optimized design of the holder geometry. As a result, a guideline for holder boss design was suggested and main factors and their influence on stress concentration in the transducer horn were surveyed.

Shape Optimal Design of Anti-vibration Rubber Assembly in Tractor Cabin Using Taguchi Method (다구찌법을 이용한 트랙터 캐빈 방진고무의 형상최적설계)

  • Seo, Ji-Hwan;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2019
  • We performed shape optimization of an anti-vibration rubber assembly which is used in the field option cabin of agricultural tractors to improve the vibration isolation capability. To characterize the hyper-elastic material property of rubber, we performed uniaxial and biaxial tension tests and used the data to calibrate the material model applied in the finite element analyses. We conducted a field test to characterize the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, we performed static analyses to derive the load-displacement curve of the anti-vibration rubber assembly. The stiffness of the rubber assembly could be calculated from this curve and was input to the harmonic analyses of the cabin. We compared the results with the test data for verification. We utilized Taguchi's parameter design method to determine the optimal shape of the anti-vibration rubber assembly and found two distinct shapes with reduced stiffness. Results show that the vibration at the cabin frame was reduced by approximately 35% or 47.6% compared with the initial design using the two optimized models.

Study on the Lateral Dynamic Crush Strength of a Spacer Grid Assembly for a LWR Nuclear Fuel Assembly (경수로 핵연료집합체 지지격자체의 횡방향 충격강도 연구)

  • Song, Kee-Nam;Lee, Sang-Hoon;Lee, Soo-Bum;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1175-1183
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components in a Light Water Reactor(LWR) nuclear fuel assembly. In the case of the Zircaloy spacer grid assembly, the primary design consideration is to ensure that lateral dynamic crush strength of the spacer grid assembly is sufficient to resist design basis loads and thereby prevent seismic accidents, without a significant increase in the hydraulic head loss for the reactor coolant in the reactor core. In this study, factors affecting the lateral dynamic crush strength of a spacer grid assembly were analyzed by performing lateral dynamic crush tests and finite element analyses. Further, an effective and economical method to enhance the lateral dynamic crush strength of the spacer grid assembly is proposed.

Automatic Work Time Evaluation Based on a Verification of Disassemblability and Assembly Configuration (분해도 및 조립형상 정보를 이용한 작업시간 산정에 관한 연구)

  • Shin, Chul Kyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.355-363
    • /
    • 2007
  • This paper presents a method of an automatic work time evaluation based on the verification of a disassemblability and assembly configuration. Even though a work time evaluation is an important field of concern for planning assembly lay-out, there are some limitations using cumbersome user query or approximated work time data without considering assembly condition. To overcome such restriction, this paper presents a method to mathematically verify assembly conditions based on the disassemblability, which is defined by the separability and stability cost. The separability cost represents a facility of the part disassembly operation, and the stability cost which represents a degree of the stability for the base assembly motion. Based upon the results, we propose a new approach of evaluating work time using neural networks. The proposed method provides an effective means of solving the work time evaluation problem and gives a design guidance of planning assembly lay-out in flexible manufacturing application. Example study is given to illustrate the concepts and procedure of the proposed schemes.

Multi-station Fixture Layout Design Using Simulated Annealing

  • Kim, Pansoo;Seun, Ji Ung
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.73-87
    • /
    • 2004
  • Automotive and aircraft assembly process rely on fixtures to support and coordinate parts and subassemblies. Fixture layout in multi-station panel assemblies has a direct dimensional effect on final products and thus presents a quality problem. This paper describes a methodology for fixture layout design in multi -station assembly processes. An optimal fixture layout improves the robustness of a fixture system against environmental noises, reduces product variability, and eventually leads to manufacturing cost reduction. One of the difficulties raised by multi-station fixture layout design is the overwhelmingly large number of design alternatives. This makes it difficult to find a global optimality and, if an inefficient algorithm is used, may require prohibitive computing time. In this paper, simulated annealing is adopted and appropriate parameters are selected to find good fixture layouts. A four-station assembly process for a sport utility vehicle (SUV) side frame is used throughout the paper to illustrate the efficiency and effectiveness of this methodology.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.