• Title/Summary/Keyword: Ash Powder

Search Result 683, Processing Time 0.026 seconds

Development of the Repair Mortar using Coarse Powder of Coal Ash (석탄회 조분을 유효이용한 보수 모르터의 개발)

  • 전진환;조정기;시기영장;립정호;화미광희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1017-1022
    • /
    • 2003
  • The hydraulic structures such as aqueduct tunnels and the drainage canal of the hydroelectric power plant in Japan are almost old. Therefore, the concrete surface of the aqueduct tunnel has received damage by wear-out and the crack, etc. This study was to develop repair mortar mixed a coal ash coarse powder by using two kinds of high early strength cements. As a result, the repair mortar was obtained by substituting the EF cement (maid in Japan) and the MT cement (maid in South Korea) at a rate of 60:40, and substituting the coal ash 30% and the mixing rate 35% of the artificial aggregate for natural fine aggregate.

  • PDF

Fabrication of Cordierite Honeycomb from Fly Ash

  • Kim, Sung-Jin;Park, Sung-Jin;Bang, Hee-Gon;Park, Sang-Yeup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1009-1010
    • /
    • 2006
  • In this study, we attempt to synthesize the cordierite from the reaction of fly-ash, alumina, silicon dioxide, and magnesia powders. For the purpose of air purification, the honeycomb filter with porous cordierite was fabricated from the combination of synthetic cordierite and pore forming agent. Fabricated porous cordierite honeycomb was prepared with high porosity (58%), and good compressive strength (69MPa).

  • PDF

Improving Quality of Fly ash Replace Concrete by Second-Class Blast Furnace Slag Powder and Gypsum (고로슬래그 미분말 2종 및 석고에 의한 플라이애시 치환 콘크리트의 품질 향상)

  • Jeon, Kyu-Nam;Lee, Jeong-Ah;Choi, Sung-Yong;Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.97-100
    • /
    • 2009
  • This study is a basic experiment to complement the problems in decrease of strength in case we change lots of fly ash("FA" here in after) in ordinary portland cement("OPC" here in after). Mixing plaster that is known to be effective in improvement in hydration of blast furnace slag powder("BS" here in after). After FA changed concrete is mixed, the study physical proporties such as compression strength, increased proportionaly. When second-class BS 5 % and gypsum 2 % changed, compare to OPC strength approximately 120 % was recorded after one day. In FA 20 % case, according to the ratio of gypsum changed results showed similar trend, but compared to FA 10 % changed concrete, expression strength improvement was lower.

  • PDF

Fluidity and compressive strength characteristics of no-cement composite according to fly ash replacement rate (플라이애시 대체율에 따른 무시멘트 복합체의 유동성 및 압축강도 특성)

  • Lee, Jae-In;Park, Jeong-Yeon;Kim, Chae-Young;Yoon, Joo-Ho;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.195-196
    • /
    • 2023
  • Recently, the importance of eco-friendly and sustainable development has been emphasized. The construction industry also needs to make efforts to reduce cement use, which accounts for 8% of greenhouse gas emissions. This study examined the fluidity and compressive strength of a cementless composite using fine blast furnace slag powder and fly ash without using cement in order to reduce greenhouse gas emissions due to the use of cement.

  • PDF

Effect of Incineration Plant Ash on Fundamental Properties of High Volume Blast Furnace-Slag Mortar incorporating Recycled Aggregate Powder (소각장애시의 치환률 변화에 따른 순환골재 미분말 함유 고로슬래그 다량치환 모르타르의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Heo, Young-Sun;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.126-127
    • /
    • 2013
  • For the decades, various of materials were used to instead of cement as the high volume CO2 occurred during the process of cement manufacture. In this paper, incineration plant ash was used in the mortar which incorporating high volume of blast furnace slag. Water to binder ratio(W/B) is fixed as 50%,BS+RP's replacement ratio is fixed as 80%,and the replacement ratio of WA1 is range as 0,0.5,1,2,3,4,5%.For the fresh mortar, flow and chloride contents has been tested. For the hardened mortar, compressive strength at 3,7,28 days has been tested. the result shows that when the replacement ratio of WA1 is 0.5%,the chloride contents is less than 0,3 kg/m3,the flowability and strength also performed better than other replacement types of mortar.

  • PDF

Strength & Microstructure of Class-C fly Ash Activated in Waste Glass Based Alkaline Solution

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Suh, Dong Kyun;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.136-137
    • /
    • 2021
  • The soda lime waste glass powder was dissolved in NaOH-4M solution to synthesize an alkaline activator, which was used to activate Class-C fly ash (FA). Compressive and flexural strength tests were conducted to determine the mechanical properties. Archimedes' principle was applied to measure the porosity of samples, (SEM-EDX) and XRD was used to study the microstructure and phase changes of samples. Through Inductive Coupled Plazma technique, the solution was found to increase the concentration of Si as the amount of dissolved glass powder was increased. Owing to the increased concentration of Si in an alkaline solution, the reactivity of FA was accelerated resulting in an increased strength and reduced porosity. Additionally, the dissolution of FA was improved as well as the formation of amorphous phases in the matrix was also enhances with the concentration of increased Si in an alkaline solution.

  • PDF

A Comparative Study of the Retrogradation and Rheology of Backsulgi with Nutriprotein and Gelatinized Rice Powder (백설기에 제조한 고단백식품과 호화한 쌀가루를 첨가하여 노화지연 및 물성 대한 비교연구)

  • 오미향
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.4
    • /
    • pp.370-378
    • /
    • 2004
  • The purpose of this study was to investigate the effect of added nutriprotein and rice powder as a plasticizer on physicohemical property, texture property of Backsulgi. In the physicochemical property, the content of proximate composition of nutriprotein was measured as 6.1% of moisture, 3.6% of carbohydrate, 84.3% of crude protein, 0.6% of crude lipid, 5.4% of ash. The raw material of rice powder was measured as 9.6% of moisture, 83.7% of carbohydrate, 6.0% of crude protein, 0.4% of crude lipid, 0.3% of ash. Swelling power and pore ratio of the control were 78.53% and 72.42%, and tended to increase as the amounts of nutriprotein and plastic rice powder increased. Aging by Avrami eguation retarded in Backsulgi added 10% plastic rice powder than rice powder Backsulgi. All the samples added 2, 4, 6, and 8% nutriprotein at the temperatures of 20 were more effective than others on aging. In texture properties, cohesiveness and springiness were not significantly changed by adding nutriprotein and not significantly changed during the storage period in all samples. Hardness and gumminess decreased by adding 2∼8% nutriprotein and increased during the storage period in all samples. Springiness and gumminess decreased by adding 40% plastic rice powder and increased during the storage period in all sample. Cohesiveness and hardness decreased by the increase of plastic rice powder. The texture characteristics by rheometer showed that Backsulgi with nutriprotein and plastic rice powder exhibited lower in hardness than the control, indicating that nutriprotein and plastic rice powder were effective in retarding retrogradation, which is better when storage time became longer.

  • PDF

Mineralogical Properties of Bottom Ash Stored in Pond Site of Hadong Power Plant (하동 화력발전소에 저장된 Bottom ash의 광물학적 물성)

  • Moon, Hoon;Kim, Seong-Geun;Yoon, Ju-Han;Chung, Chul-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.101-102
    • /
    • 2015
  • Significant amount of bottom ash has been stored in the pond site of Hadong coal power plant located at southeast region of Korea. In order to address strong environmental regulation that is going to be enforced in the near future, it is necessary to consume waste bottom ash stored in the pond site in a sustainable manner. In this research, the chemical and mineral characteristics of various sized bottom ash samples from Hadong coal power plant were analyzed using XRF, XRD, and particle size analyzer. According to the experimental results, the chemical compositions of bottom ash was slightly changed in terms of Al and Fe content. As the size of the bottom ash increased, cristobalite was observed as a result of crystallization. The mineralogical composition and its size distribution of powder type bottom ash indicated that significant amount of fly ash is included together with small sized bottom ash.

  • PDF

A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet (가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구)

  • Jang Ju-Young;Yoon Yo-Hyun;Park Jung-Min;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF

Hydration Reaction Properties of Concrete With Binders and Admixtures (결합재와 혼화재 종류에 따른 콘크리트의 수화반응 특성)

  • Cho, Il-Ho;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • Recently, owing to the development of industry and improvement of building techniques, concrete structures are becoming larger and higher. This study was performed to analyze hydration reation properties of concrete with binders and admixtures, such as OPC, low heat cement, belite rich cement, slag powder, lime powder and fly ash. To investigate effects of PC type superplasticizer on the hydration, experiments involving FT-IR, XRD, DSC, SEM were analyzed at the curing age 1day, 3days and 28days. The hydration reaction rate of OPC concrete slightly delayed at the curing age 1day, blast furnace slag powder and fly ash were more effective. BRC and LHC concretes can be used for concrete structures in winter season.