• Title/Summary/Keyword: Ascorbate peroxidase

Search Result 166, Processing Time 0.046 seconds

Ozone-induced Alterations in the Activities of Enzymes in Soybean Leaves (대두에서 오존처리에 의한 몇가지 효소의 활성도 변화)

  • Kang, Sang-Jae;Park, Woo-Churl;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • This experiment was carried out to investigate the changes of antioxidant enzymes activities in soybean leaves, exposed to 0.2ppm of ozone. We have investigated whether Eunhakong and Samnamkong may scavenge ozone induced activated oxygen species by invoking antioxidant enzymes such as ascorbate peroxidase(APOX), glutathione reductase(GR), monodehydroascorbate reductase(MDHAR), dehydroascorbate reductase(DHAR). Ozone exposure preferentially increased APOX, GR and MDHAR activities, whereas that of DHAR only decreased slowly. When soybean plans were fumigated with 0.2ppm of ozone, the levels of ascorbate and reduced glutathione decreased within a few hours. In eunhakong, which has, slightly a strong tolerance to ozone, was found to have higher antioxidants levels than samnamkong. However, there was no remarkable difference two cultivars in the activities of enzymes which protect plant against active oxygen species.

  • PDF

Expression of Catalase (CAT) and Ascorbate Peroxidase (APX) in MuSI Transgenic Tobacco under Cadmium Stress

  • Kim, Kye-Hoon;Kim, Young-Nam;Lim, Ga-Hee;Lee, Mi-Na;Jung, Yoon-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • The MuSI is known as a multiple stress resistant gene with several lines. A previous study using RT-PCR showed that the expression of MuSI gene in tobacco plant induced its tolerance to Cd stress. This study was conducted to examine the enhanced Cd tolerance of the MuSI transgenic tobacco plant through germination test and to understand the role of the involved antioxidant enzymes for the exhibited tolerance. Germination rate of MuSI transgenic tobacco was more than 10% higher than that of wild-type tobacco, and seedlings of MuSI transgenic tobacco grew up to 1.6 times larger and greener than seedlings of wild-type tobacco at 200 and 300 ${\mu}M$ Cd. From the third to the fifth day, CAT activities at 100 and 200 ${\mu}M$ Cd and APX activities at 100, 200 and 300 ${\mu}M$ Cd of MuSI transgenic tobacco were up to two times higher than those of wild-type tobacco. MuSI gene is shown to enhance the activities of antioxidant enzymes resulting in higher tolerance to oxidative stress compared with the control plant.

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF

Improvement of Drought Tolerance in Transgenic Tobacco Plant (형질전환 담배의 내건성 개선)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

  • Lee, Hak-Jyung;Yang, Ho yeon;Choi, Jong-il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1217-1224
    • /
    • 2018
  • Seaweeds produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of Pyropia yezoensis (Bangiales, Rhodophyta) ascorbate peroxidase (PyAPX) and manganese-superoxide dismutase (PyMnSOD) was examined by qRT-PCR in P. yezoensis blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in Chlamydomonas. A comparison of the different expression levels of PyAPX and PyMnSOD after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the PyAPX and PyMnSOD genes also increased following exposure to $H_2O_2$. When these two genes were overexpressed in Chlamydomonas, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that Chlamydomonas is a suitable model for studying the function of stress genes, and that PyAPX and PyMnSOD genes are involved in the adaptation and defense against stresses that alter metabolism.

Peroxidase Activity during Leaf Infection of Mulberry (Morus alba L.) with Brown Leaf Spot Fungus Myrothecium roridum

  • Chattopadhyay Soumen;Krishnan Natraj;Maji Manas D.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Peroxidase activity was measured in brown leaf spot pathogen (Myrothecium roridum) inoculated potted mulberry (Morus alba) during pre-symptomatic to various symptom development stages and compared with corresponding healthy leaf tissues. The enzyme showed a pH optimum of 7.0 and the activity was linearly increased up to 15 min of incubation. The peroxidase had a broad substrate specificity and the rates of oxidation were in the rank of pyrogallol> guaiacol> ascorbate at pH 7.0. Catechol at 10 mM inhibited 89% of guaiacol-peroxidase and 76% pyrogallol-peroxidase activities, indicated higher non-specific peroxidation in pyrogallol dependent assay system in mulberry than guaiacol. The optimum requirement for the guaiacol dependent assay was 0.2 ml (${\approx}40-60{\mu}g$ equivalent of protein) of crude enzyme source. Excepting the 8th leaf from the apex, the peroxidase activity did not vary appreciably in different leaf positions. In pre-symptomatic phases, an initial (1 to 5 min) rise of peroxidase activity was noticed in inoculated leaves, and then maintained a plateau up to 300 min. In contrary, non-infected tissue showed a slightly increased trend of enzyme level up to 420 min. In infected tissue, a sharp transient increase (3.1 fold) of peroxidase activity appeared between 300 - 420 min post infections. Afterwards, significantly different but steady maintenance of enzyme levels were observed in two treatments. On the other hand, during symptom development, a sharp increase in peroxidase activity was noticed up to 4th grade of lesion appearance (25.1 % to 50% of leaf area infection), and then declined slightly. However, in non-infected but same age healthy leaves, such huge fluctuations of enzyme level did not apparent. A high positive correlation $(R^2=0.92)$ between peroxidase activity and leaf spot development grades was also marked. The result implies that pre-symptomatic burst (between 1 - 5 and 300 - 420 min) and subsequent increased trend of guaiacol peroxidase activity may require for the symptomatic manifestation of Myrothecium leaf spot in mulberry.

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.