• Title/Summary/Keyword: As-Built BIM

Search Result 65, Processing Time 0.033 seconds

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

An Object Quality Verification Method for BIM Libraries based on Standardized Drawings in Civil Projects -Focusing on Retaining Wall Case (토목 표준도 기반의 BIM 라이브러리에 대한 객체 품질 검증 방법 연구-옹벽사례를 중심으로)

  • Moon, Hyoun-Seok;Kim, Chang-Yoon;Cho, Geun-Ha;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.129-137
    • /
    • 2016
  • BIM libraries for architectural projects have been developed and distributed. However, they do not define physical and logical quality control methods for individual library objects, so there are some difficulties in securing reliability of 3D library models converted from 2D drawings. Because the BIM library contents can be built by participating material and member-fabrication companies, after making individual BIM library objects, a certification process through separate quality verification is very important when delivering as-built BIM libraries. Since the BIM library should have generality for usage, it is necessary to secure the quality of BIM library objects according to consistent verification standards. Therefore, this study suggests a quality verification method for certifying a BIM library object from physical and data perspectives by comparing existing 2D drawings in the BIM libraries built based on standardized 2D drawings from MOLIT. This method could be widely used for quality verification in delivering BIM libraries by companies in the construction sector and operated with rule set data for quality verification of as-built BIM models.

3D Scanning Data Coordination and As-Built-BIM Construction Process Optimization - Utilization of Point Cloud Data for Structural Analysis

  • Kim, Tae Hyuk;Woo, Woontaek;Chung, Kwangryang
    • Architectural research
    • /
    • v.21 no.4
    • /
    • pp.111-116
    • /
    • 2019
  • The premise of this research is the recent advancement of Building Information Modeling(BIM) Technology and Laser Scanning Technology(3D Scanning). The purpose of the paper is to amplify the potential offered by the combination of BIM and Point Cloud Data (PCD) for structural analysis. Today, enormous amounts of construction site data can be potentially categorized and quantified through BIM software. One of the extraordinary strengths of BIM software comes from its collaborative feature, which can combine different sources of data and knowledge. There are vastly different ways to obtain multiple construction site data, and 3D scanning is one of the effective ways to collect close-to-reality construction site data. The objective of this paper is to emphasize the prospects of pre-scanning and post-scanning automation algorithms. The research aims to stimulate the recent development of 3D scanning and BIM technology to develop Scan-to-BIM. The paper will review the current issues of Scan-to-BIM tasks to achieve As-Built BIM and suggest how it can be improved. This paper will propose a method of coordinating and utilizing PCD for construction and structural analysis during construction.

A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM (준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구)

  • Jung, Jaehoon;Yoon, Sanghyun;Cyrill, Stachniss;Heo, Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.32-42
    • /
    • 2016
  • In Korea, the absence of BIM use in existing civil structures and buildings is driving a demand for as-built BIM. As-built BIMs are often created using laser scanners that provide dense 3D point cloud data. Conventional static laser scanning approaches often suffer from limitations in their operability due to the difficulties in moving the equipment, the selection of scanning location, and the requirement of placing targets or extracting tie points for registration of each scanned point cloud. This paper aims at reducing the manual effort using a kinematic 3D laser scanning system based on graph-based simultaneous localization and mapping (SLAM) for continuous indoor mapping. The robotic platform carries three 2D laser scanners: the front scanner is mounted horizontally to compute the robot's trajectory and to build the SLAM graph; the other two scanners are mounted vertically to scan the profiles of surrounding environments. To reduce the accumulated error in the trajectory of the platform through loop closures, the graph-based SLAM system incorporates AdaBoost loop closure approach, which is particularly suitable for the developed multi-scanner system providing more features than the single-scanner system for training. We implemented the proposed method and evaluated it in two indoor test sites. Our experimental results show that the false positive rate was reduced by 13.6% and 7.9% for the two dataset. Finally, the 2D and 3D mapping results of the two test sites confirmed the effectiveness of the proposed graph-based SLAM.

Development Method of BIM Data Modeling Guide for Facility Management : Focusing on Building Mechanical System (시설물 유지관리를 위한 BIM 데이터 입력기준 개발방안 : 건축 기계설비를 중심으로)

  • Won, Ji-Sun;Cho, Geun-Ha;Ju, Ki-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.4
    • /
    • pp.216-224
    • /
    • 2013
  • Facility data is created throughout the design and construction phase. But the most facility managers bear significant costs that arise from the lack of interoperability with facility lifecycle. This paper is concerned with the way to collect facility data using BIM technology. The aim of this paper is to suggest BIM data modeling guide for the facility management using the information that need to be delivered from design and construction phase to operation and management phase. The BIM data modeling guide focus on the properties of mechanical equipment. It is to be hoped that this study will contribute to collect facility data from as-built BIM data and to build facility management system database without difficulty.

Using Drone and Laser Scanners for As-built Building Information Model Creation of a Cultural Heritage Building (드론 및 레이저스캐너를 활용한 근대 건축물 문화재 빌딩정보 모델 역설계 구축에 관한 연구)

  • Jung, Rae-Kyu;Koo, Bon-Sang;Yu, Young-Su
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.11-20
    • /
    • 2019
  • The use of drones and laser scanners have the potential to drastically reduce the time and costs of conventional techniques employed for field survey of cultural heritage buildings. Moreover, point cloud data can be utilized to create an as-built Building Information Model (BIM), providing a repository for consistent operations information. However, BIM creation is not a requisite for heritage buildings, and their technological possibilities and barriers have not been documented. This research explored the processes required to convert a heritage university building to a BIM model, using existing off-the-shelf software applications. Point cloud data was gathered from drones for the exterior, while a laser scanner was employed for the interior of the building. The point clouds were preprocessed and used as references for the geometry of the building elements, including walls, slabs, windows, doors, and staircases. The BIM model was subsequently created for the individual elements using existing and custom libraries. The model was used to extract 2D CAD drawings that met the requirements of Korea's heritage preservation specifications. The experiment showed that technical improvements were needed to overcome issues of occlusion, modeling errors due to modeler's subjective judgements and point cloud data cleaning and filtering techniques.

Definition of 3D Modeling Level of Detail in BIM Regeneration Through Reverse Engineering - Case Study on 3D Modeling Using Terrestrial LiDAR - (역설계를 통해 BIM 구축시에 3D 모델링에 대한 세밀도(LoD) 정립 - 지상 LiDAR 활용한 3D 모델링 연구 중심 -)

  • Chae, Jae-Hyun;Lee, Ji-Yeong
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.8-20
    • /
    • 2017
  • When it comes to set up the BIM through the reverse engineering, the level of detail(LoD) required for finalized outcomes is different from each purpose. Therefore, it is necessary to establish some concrete criteria which describe the definition of LoDs on 3D modeling for the purpose of each reverse engineering. This research shows the criteria of the 1) positional accuracy, 2) generalization level, 3) scale level, 4) scope of description, and 5) the area available for application by classifying LoD from 1 to 6 on 3D modeling for each purpose of reverse engineering. Moreover, through applying those criteria for the 3D point cloud dataset of building made by terrestrial LiDAR, this research finds out the working hour of 3D modeling of reverse engineering by each LoDs according to defined LoD criteria for each level. It is expected that those findings, how those criteria of LoD on reverse engineering are utilized for modeling-workers to decide whether the outcomes can be suitable for their budget, applicable fields or not, would contribute to help them as a basic information.

A Study on the Expression of Authenticity in the Digital Content of Built Heritage with HBIM (건축유산정보모델(HBIM)을 활용한 건축문화유산 디지털 콘텐츠의 진정성 표현 연구)

  • Kim, Bo-Ram;Lee, Jong-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.276-287
    • /
    • 2022
  • Since the 1990s, digital technology has been actively applied in the field of heritage, and this presents a new possibility of using cultural heritage as a way to utilize the original cultural data that was previously recorded and stored. Methods of interpreting cultural heritage have been particularly diversified due to various external circumstances such as COVID-19 and time constraints, and the use of contactless digital content has played a significant role in built heritage that cannot be moved. Building Information Modeling (BIM) technology is considered as a way to properly express the authenticity of built heritage, but simply creating built heritage content with BIM cannot express the authenticity of cultural heritage. Therefore, it is necessary to show the reliability of the process of content production through an authorized institution and to provide the information of members on the content. This study intends to contribute to the field of digital heritage by suggesting ways to improve reliability and express authenticity in the production of built heritage content.

Development of an Integrated IaaS+PaaS Environment for Providing Cloud Computing Service in a BIM Platform for Harbor Facilities (항만 BIM 플랫폼의 클라우드 서비스를 위한 IaaS+PaaS 통합 환경 개발)

  • Moon, Hyoun-Seok;Hyun, Keun-Ju;Kim, Won-Sik
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.62-74
    • /
    • 2019
  • Because the existing BIM platform is based on user services, the focus is on the development of SaaS (Software as a Service), which provides business services online. However, since a harbor is a security facility, the harbor BIM platform is preferably provided in a private form, rather than relying on the infrastructure environment provided by external cloud providers. Therefore, this study analyzes and reviews the main functions to be provided as SaaS services of the harbor BIM platform. The goal is to build a cloud-based harbor BIM platform that can provide this service to users. To this end, we built IaaS (Infrastructure as a Service) environment of the harbor BIM platform based on the open source Open Stack and integrate and develop PaaS environment with Open Shift applied with IaaS. We applied the GPU to the harbor BIM platform to verify the performance of the harbor BIM platform, and found that the rendering and loading times are improved. In particular, it is expected to reduce the cost of introduction and provide it as the basic cloud environment of similar BIM platform for infrastructure facilities.

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.