• Title/Summary/Keyword: Aryl benzoates

Search Result 9, Processing Time 0.016 seconds

Structure-Reactivity Relationships for the Reaction of Aryl Benzoates with Amines (Aryl Benzoates와 Amine류의 반응에 관한 구조-반응성 관계)

  • Cheong, Duk-Young;Kweon, Jeong-Min;Yoh, Soo-Dong;Park, Byung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.572-577
    • /
    • 1995
  • The reaction rates of aryl substituted(Z)-benzoates with amines were determined by a spectro-photometric method in acetonitrile at various temperatures. Hammett $\rho$, Bronsted ${\beta}$ values, and activation parameters were evaluated from the kinetic data. Linear free energy relationships, activation parameters, and the interpretation of M-O-F-J diagram suggested that these reactions were probably enforced an $S_AN$ mechanism.

  • PDF

A Mechanistic Study on Acyl Transfer Reactions of Aryl Substituted Benzoates Between Aryloxides

  • Ik-Hwan Um;Jae-Shin Jeon;Dong-Sook Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.406-410
    • /
    • 1991
  • Second order rate constants have been measured spectrophotometrically for reactions of 4-nitrophenyl substituted benzoates with various aryloxides and aryl benzoates with p-chlorophenoxide. The reactivity has exhibited significant dependences on the electronic nature of the substituent in the acyl moiety of the substrate and in the nucleophilic phenoxide, while the substituent in the leaving phenoxide has little influenced the reactivity. The Bronsted coefficient $\beta$ values so obtiained support that the present acyl transfer reaction proceeds via a stepwise mechanism in which the nucleophilic attack would be the rate-determining step. Interestingly, the magnitude of the $\betaacyl$ and $\beta$ nuc increases with increasing reactivity, implying that the reactivity selectivity principle is not operative in the present system. The failure of the reactivity selectivity principle is attributed to a change in transition state structure upon the substituent variation in the present acyl transfer reaction.

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion

  • Kim, Song-I;Kim, Eun-Hee;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.689-693
    • /
    • 2010
  • Second-order rate constants ($k_{CN^-}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-r) with $CN^-$ ion in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot is linear with ${\beta}_{1g}$ = -0.49, a typical ${\beta}_{1g}$ value for reactions reported to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^{\circ}$ and ${\sigma}^-$ constants exhibit many scattered points. In contrast, the Yukawa-Tsuno plot for the same reaction exhibits excellent linearity with ${\rho}_Y$ = 1.37 and r = 0.34, indicating that a negative charge develops partially on the oxygen atom of the leaving aryloxide in the rate-determining step (RDS). Although two different mechanisms are plausible (i.e., a concerted mechanism and a stepwise pathway in which expulsion of the leaving group occurs at the RDS), the reaction has been concluded to proceed through a concerted mechanism on the basis of the magnitude of ${\beta}_{1g}$ and ${\rho}_Y$ values.

A Mechanistic Study on Reactions of Aryl Benzoates with Ethoxide, Aryloxides and Acetophenone oximates in Absolute Ethanol

  • 엄익환;오수진;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.802-807
    • /
    • 1996
  • Second-order rate constants have been measured spectrophotometrically for the reactions of aryl benzoates (X-C6H4CO2C6H4-Y) with EtO-, Z-C6H4O- and Z-C6H4C(Me)=NO- in absolute ethanol at 25.0 ℃. All the reactions have been performed in the presence of excess 18-crown-6 ether in order to eliminate the catalytic effect shown by alkali metal ion. A good Hammett correlation has been obtained with a large ρ- value (-1.96) when σ- (Z) constant was used for the reaction of p-nitrophenyl benzoate (PNPB) with Z-C6H4O-. Surprisingly, the one for the reaction of PNPB with Z-C6H4C(Me)=NO- gives a small but definitely positive ρ- value (+0.09). However, for reactions of C6H5CO2C6H4-Y with EtO-, correlation of log k with σ- (Y) constant gives very poor Hammett correlation. A significantly improved linearity has been obtained when σ0 (Y) constant was used, indicating that the leaving group departure is little advanced at the TS of the RDS. For reactions of X-C6H4CO2C6H4-4-NO2 with EtO-, C6H5O- and C6H5C(Me)=NO-, correlations of log k with σ (X) constants for all the three nucleophile systems give good linearity with large positive ρ values, e.g. 2.95, 2.81 and 3.06 for EtO-, C6H5O- and C6H5C(Me)=NO-, respectively. The large ρ values clearly suggest that the present reaction proceeds via a stepwise mechanism in which the formation of the addition intermediate is the RDS.

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Z-Substituted Phenoxides

  • Min, Se-Won;Seo, Jin-A;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2403-2407
    • /
    • 2009
  • Second-order rate constants have been measured for two series of nucleophilic displacement reactions, i.e., reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides and those of Y-substituted phenyl benzoates (1a-h) with 4-chlorophenoxide (4-ClPhO–) in 80 mol% $H_2O$/20 mol% DMSO at 25.0 ${\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot for reactions of 4-nitrophenyl benzoate with Z-substituted phenoxides exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.72. Reactions of 1a-h with 4-chlorophenoxide result in also a linear Br$\phi$nsted-type plot with ${\beta}_{lg}$ = –0.62, a typical ${\beta}_{lg}$ value for a concerted mechanism. The Hammett plots correlated with ${\sigma}^o\;and\;{\sigma}^-$ constants show many scattered points for reactions of 1a-h with 4-chlorophenoxide. In contrast, the corresponding Yukawa-Tsuno plot exhibits an excellent linear correlation with $\rho_Y$ = 2.26 and r = 0.53, indicating that expulsion of the leaving group occurs at the rate-determining step (RDS) either in a concerted mechanism or in a stepwise pathway. However, a stepwise mechanism with leaving group departure being the RDS is excluded since the leaving Y-substituted phenoxide is less basic and a better nucleofuge than the incoming 4-ClPh$O^-$. Thus, the reactions have been concluded to proceed through a concerted mechanism, in which bond formation between the nucleophile and electrophilic center is more advanced than expulsion of the leaving group in the transition state on the basis of the magnitude of ${\beta}_{nuc}\;and\;{\beta}_{lg}$ values.

Carbonylation of 1-Bromo-2,6-bis(bromomethyl)benzene Catalyzed by Cobalt Carbonyl

  • Sang Chul Shim;Shin Ae Chae;Dong Yeob Lee;Young Zoo Youn;Jae Goo Shim;Chil Hoon Doh
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.481-485
    • /
    • 1993
  • Dialkyl 1-bromobenzene-2,6-diacetates were easily prepared by the carbonylation of the moiety of benzylic bromide in 1-bromo-2,6-bis(bromomethyl)benzene with alcohol in the presence of NaOAc< TEX>${\cdot}$3H$_2$O and a catalytic amount of Co$_2$(CO)$_8$under the atmospheric pressure of carbon monoxide at room temperature in excellent yield. Alkyl 2,6-bis(alkoxymethyl)benzoates were obtained by the carbonylation of the moiety of aryl bromide in 1-bromo-2,6-bis(alkoxymethyl)-benzene, which derived from 1-bromo-2,6-bis(bromomethyl)benzene, alcohol, NaOR, and CH$_3$I under the same conditions. Alkyl 2,6-bis(carboxymethyl)benzoate was also obtained in a trace amount for 24 hrs at room temperature.

Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism

  • Kim, Chae-Won;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2955-2959
    • /
    • 2011
  • Second-order rate constants for nucleophilic substitution reactions of 2,4-dinitrophenyl benzenesulfonate 1a with a series of alicyclic secondary amines in MeCN have been measured spectrophotometrically and compared with those reported previously for the corresponding reactions performed in aqueous medium to investigate the effect of medium on reactivity and reaction mechanism. The amines employed in this study are found to be more reactive in the aprotic solvent than in $H_2O$. The reactions of 1a in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.58, which contrasts to the curved Br${\o}$nsted-type plot reported previously for the corresponding reactions performed in the aqueous medium (i.e., ${\beta}_2$ = 0.86 and ${\beta}_1$ = 0.38). Accordingly, it has been concluded that the reaction mechanism changes from a stepwise mechanism to a concerted pathway upon changing the medium from $H_2O$ to MeCN. Reactions of Y-substituted phenyl benzenesulfonates 1a-c with piperidine in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{lg}$ = -1.31, indicating that expulsion of the leaving group is significantly more advanced than bond formation in the transition state. The trigonal bipyramidal intermediate ($TBPy^{\pm}$) proposed previously for the reactions in $H_2O$ would be highly unstable in MeCN due to strong repulsion between the negative charge in $TBPy^{\pm}$ and the negative dipole end of MeCN. Thus, destabilization of $TBPy^{\pm}$ in MeCN has been concluded to change the reaction mechanism from a stepwise mechanism to a concerted pathway.

Carbonylation of Bromobenzyl Bromide Catalyzed by $Co_2(CO)_8(II)$. Selective Synthesis of Alkyl(alkoxymethyl)benzoate (코발트 카르보닐 촉매에 의한 브로모벤질 브로미드의 카르보닐화 (II). 알킬(알콕시메틸)벤조에이트의 선택성 합성)

  • Shim Sang Chul;Doh Chil Hoon;Youn Young Zoo;Cho Chan Sik;Woo Byung Won;Oh Dae Hee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.90-95
    • /
    • 1991
  • A method for the selective syntheses of alkyl (alkoxymethyl)benzoates from halobenzyl halides by two steps in one pot process is described. In the first step, benzyl halide moiety is etherified with alkoxide anion in alcohol by Williamson ether process. In the second step, aryl halide moiety is carbonylated to give alkyl (alkoxymethyl)benzoate with alcohol, Na$_2$CO$_3$, CH$_3$I, and carbon monoxide (1 atm) in the presence of a catalytic amount of Co$_2$(CO)$_8$ in excellent yield.

  • PDF