• Title/Summary/Keyword: Artificial propagation

Search Result 533, Processing Time 0.025 seconds

Artificial blasts discrimination by using seismo-acoustic data in 2001 (지진-공중음파 자료를 이용한 2001년도 인공발파 식별)

  • 제일영;전명순;전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.59-63
    • /
    • 2002
  • Artificial blasts, defined as seismo-acoustic events, were discriminated from natural earthquakes in the Korean Peninsula by analyzing seismo-acoustic data. 219 seismo-acoustic events corresponding to 9 percent of total seismic events in 2001 were analyzed and classified as artificial surface blasts. Most seismo-acoustic events were concentrated in several areas. This distribution pattern was similar to the previous result in 1999-2000. Most of seismo-acoustic events especially concentrated at 7 small areas in North and South Korea. The number of seismo-acoustic events occurred in North and South Korea was 79 and 140 events, respectively. The local magnitude of seismic events from North Korea was relatively larger than from South. And some infrasound occurred from North Korea had a characteristic of sequential arrivals of signals, which reflected the different propagation in the atmosphere.

  • PDF

Acoustic Emission Monitoring of Drilling Burr Formation Using Wavelet Transform and an Artificial Neural Network (웨이브렛 변환과 신경망 알고리즘을 이용한 드릴링 버 생성 음향방출 모니터링)

  • Lee Seoung Hwan;Kim Tae Eun;Raa Kwang Youel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.37-43
    • /
    • 2005
  • Real time monitoring of exit burr formation is critical in manufacturing automation. In this paper, acoustic emission (AE) was used to detect the burr formation during drilling. By using wavelet transform (WT), AE data were compressed without unnecessary details. Then the transformed data were used as selected features (inputs) of a back-propagation artificial neural net (ANN). In order to validate the in process AE monitoring system, both WT-based ANN and cutting condition (cutting speed, feed, drill diameter, etc.) based ANN outputs were compared with experimental data.

Turbojet Engine Control Using Artificial Neural Network PID Controller With High Gain Observer (고이득 관측기가 적용된 터보제트엔진의 인공신경망 PID 제어기 설계)

  • Kim, Dae-Gi;Jie, Min-Seok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, controller propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Levenberg-Marquartdt Error Back Propagation Algorithm. Artificial Neural Network inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbojet engine for UAV. High Gain Observer is used to estimate to compressor rotation speed of turbojet engine. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

An Artificial Neural Networks Application for the Automatic Detection of Severity of Stator Inter Coil Fault in Three Phase Induction Motor

  • Rajamany, Gayatridevi;Srinivasan, Sekar
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2219-2226
    • /
    • 2017
  • This paper deals with artificial neural network approach for automatic detection of severity level of stator winding fault in induction motor. The problem is faced through modelling and simulation of induction motor with inter coil shorting in stator winding. The sum of the absolute values of difference in the peak values of phase currents from each half cycle has been chosen as the main input to the classifier. Sample values from workspace of Simulink model, which are verified with experiment setup practically, have been imported to neural network architecture. Consideration of a single input extracted from time domain simplifies and advances the fault detection technique. The output of the feed forward back propagation neural network classifies the short circuit fault level of the stator winding.

An application of BP-Artificial Neural Networks for factory location selection;case study of a Korean factory

  • Hou, Liyao;Suh, Eui-Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.351-356
    • /
    • 2007
  • Factory location selection is very important to the success of operation of the whole supply chain, but few effective solutions exist to deliver a good result, motivated by this, this paper tries to introduce a new factory location selection methodology by employing the artificial neural networks technology. First, we reviewed previous research related to factory location selection problems, and then developed a (neural network-based factory selection model) NNFSM which adopted back-propagation neural network theory, next, we developed computer program using C++ to demonstrate our proposed model. then we did case study by choosing a Korean steelmaking company P to show how our proposed model works,. Finnaly, we concluded by highlighting the key contributions of this paper and pointing out the limitations and future research directions of this paper. Compared to other traditional factory location selection methods, our proposed model is time-saving; more efficient.and can produce a much better result.

  • PDF

THE CROSSING APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT KANGNEUNG, KOREA

  • LEE MOUNG-JIN;WON JOONG-SUN;LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.363-366
    • /
    • 2004
  • The purpose of this study is to reveal the spatial relationship between landslides and geospatial data set and to map the landslide susceptibility using this relationship, and the landslide occurrence data in Kangneung area in 2002. Landslide locations were identified from interpretation of satellite images. Landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Susceptibility maps were constructed from Geographic Information System (GIS), The cases were overlaid and cross overlaid for landslide susceptibility mapping in each study area in Kangneung.

  • PDF

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Vehicle Dynamic Simulation Including an Artificial Neural Network Bushing Model

  • Sohn, Jeong-Hyun;Baek-Woon-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.255-264
    • /
    • 2005
  • In this paper, a practical bushing model is proposed to improve the accuracy of the vehicle dynamic analysis. The results of the rubber bushing are used to develop an empirical bushing model with an artificial neural network. A back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model. Then, a full car dynamic model with artificial neural network bushings is simulated to show the feasibility of the proposed bushing model.

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Prediction Partial Molar Heat Capacity at Infinite Dilution for Aqueous Solutions of Various Polar Aromatic Compounds over a Wide Range of Conditions Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Esmailian, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1477-1484
    • /
    • 2007
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa, temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained neural networks could fairly represent dependence of the heat capacity on the molecular descriptors, temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and 4.642, respectively.