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Artificial neural networks (ANNSs). for a first time. were successfully developed for the prediction partial molar
heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range
of temperatures (303.53-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with
back-propagation of emror were generated using three (the heat capacity in T = 303,55 K and P = 0.1 MPa,
temperature and pressure) and six parameters (four theoretical descriptors. temperature and pressure) as inputs
and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained
neural networks could fairly represent dependence of the heat capacity on the molecular descriptors,
temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.735 and
4.642, respectively.
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Introduction

Heat capacities of organic solutes in water are of great
interest for caleulating thermodynamic properties of organic
aqueous systems at super ambient conditions. The temper-
ature integration of the heat capacity data allows obtaining
the standard chemucal potentials and activity coefficients
needed for calculating phase and chemical equilibria at
conditions of interest for geochenustry. power cvcle
chemistry and hydrothermal technologies.'~ Only a limited
amount of data are available at upper temperatures and
pressures. The main reason is certainly a time consunung
and costly task of the calorimeter construction since com-
mercial mstruments allowing the heat capacity determin-
ation over a range of temperatures do not have the precision
necessary for the calculation of heat capacity. For this
reason, it 1s very valuable to predict the heat capacity at
higher temperatures and pressures using mininum number
of expeniments. The prediction of physicochemical and
biological properties/activities for organic molecules 1s the
main objectives of the quantitative structure-property/
activity relationships (QSPRs/QSARs).™ QSPR/QSAR
models are obtained on the basis of the correlation between
the experimental values of the property/activity and descrip-
tors reflecting the molecular structure of the respective
compounds. Since these theoretical descriptors are deter-
mined solely from computational methods. a priori predic-
tions of the properties/activities of compounds are possible.
no laboratory measurements are needed thus saving time.
space. materials, equipment and alleviating safety (toxicity)
and disposal concems.'"!!

Various methods for constructing QSPR/QSAR models

have been used including multi-parameter lingar regression
(MLR), principal component analysis (PCA) and partial
least-squares regression (PLS).!-'" In addition. artificial
neural networks (ANNSs) have become popular due to their
success where complex non-linear relationships exist amongst
data.'®"¥ ANNs are biologically inspired computer programs
designed to simulate the way i which the human brain
processes information.' ANNs gather their knowledge by
detecting the patterns and relationships in data, not from
programming. The wide applicability of ANNs stems from
therr flexibility and ability to model non-linear systems
without prior knowledge of an empirical model. For these
reason i recent vears. ANNs have been used to a wide
variety of chemical problems such as simulation of mass
spectra. ion mteraction chromatography, aqueous solubility
and partition coefficient. simulation of nuclear magnetic
resonance spectra, prediction of bioconcentration factor.
solvent effects on reaction rate. prediction normalized polarity
parameter in mixed solvent svstems, acidity constant of
organic compounds and dielectric constant of binary mix-
l_ures.]9—4]

In this work an ANN model. for a first time. was generated
for prediction partial molar heat capacity of aqueous
solutions at infimte dilution for various polar aromatic
compounds over wide range of temperatures (303.55-623.20
K) and pressures (0.1-30.2 MPa) using three mputs (the
partial molar heat capacity at infimite dilution for the various
aqueous solutions at T = 303.55 K and P = 0.1 MPa, temper-
ature and pressure). In the next step, a MLR model was
constructed between the heat capacity of the compounds and
four theoretical descniptors. Then an ANN model using the
theoretical descriptors. temperature and pressure was con-
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structed for prediction the heat capacity and the results were
compared with the expenmental values of them.

Methods and Procedure

Data set. A rehiable database 1s critically important for the
traiming of ANNSs. Very recently partial molar heat capacity
at infinite dilution have been determined for different aque-
ous solutions of polar aromatic compounds at various
temperatures and pressures.'~ In this work, the data for
aqueous solutions of phenol. o-cresol. m-cresol. p-cresol.
aniline, o-toluidne, m-toluidine, p-toluidine. m-aminophenol
and o-diaminobenzene that they have at least eight values
for the heat capacity at various temperatures and pressures
have been used as data set. The data set was randomly
divided into three groups: a traiming set. a validation set and
a prediction set consisting of 74. 21 and 21 data, respec-
tively.'>'” The training and validation sets were used for the
model generation and the prediction set was used for
evaluation of the generated model, because a prediction set
15 a better estimator of the ANN generalization ability than a
monitoring (validation) set.

Descriptor generation. In order to calculate the theore-
tical descriptors. the z-matrices (molecular models) were
constructed with the aid of HyperChem 7.0 and molecular
structures were optimized using AM1 algorithm.* In order
to calculate theoretical descriptors. the molecular geometries
of molecules were further optunized by Dragon package
version 2.1.* For this purpose the output of the HyvperChem
software for each compound fed into the Dragorn program
and the descriptors were calculated. As a result. a total of
1481 theoretical descriptors were calculated for each
compound in the data sets (11 compounds).

Feature selection. The theoretical descriptors were
reduced by the following methods: 1) descriptors that are
constant or nearly constant have been eliminated. because
these descriptors can not define the vanation of the property
with structure: 2) in order to decrease the redundancy exist-
ing in the descriptors data matrix. the correlation coefficients
for all pairs of remaining descriptors were determined. If a
correlation coefficient was higher than 0.91. the descriptor
with lower correlation with the heat capacity was eliminat-
ed:** 3) the method of stepwise multi-parameter linear
regression was used to select the most important descriptors
and to calculate the coefficients relating the heat capacity to
the descriptors.“' The MLR models were generated using
spss/pe software package release 10.0.%

Neural network generation. The specification of a
typical neural network model requires the choice of the type
of inputs. the number of hidden lavers. the number of
neurons in each hidden layer and the connection structure
between the inputs and the output layers. Three-laver
networks with sigmoidal transfer function for neurons were
designed. The initial weights were randomly selected bet-
ween 0 and 1. Before training, the input and output values
were normalized between 0.1 and 0.9. The optimization of
the weights and biases was carried out according fo the
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resilient back-propagation algorithm.* For evaluation pre-
dictive power of the networks. the tramed ANNs were used
to predict the heat capacity for 21 aqueous solutions
mcluded in the prediction set. The performances of ANNs
are evaluated by the mean percentage deviation (MPD) and
root-mean square error (RMSE). which are defined as
follows:

N cale exp
MPD = g 3 (P, -F7)
N i = P;xp

?

(D

N ( ;a!c_;;xpf

RMSE= | ¥ ——~"— )
R

where PP and P are experimental and calculated values
of the heat capacity using the models.
Individual percent deviation (IPD) is defined as follows:

P.calc _ P‘.axp
[PD = 100 x (;) 3)

=

The processing of the data was carried using Matlab 6.5.%
The neural networks were implemented using Neural
Network Toolbox Ver. 4.0 for Matlab.*

Results and Discussion

Prediction the heat capacity without theoretical des-
criptors. There are no theoretical principles for choosing the
proper network topology: so different structures were tested
in order to obtain the optimal hidden neurons and training
cveles '™ Before training the network. the numbers of
nodes in the hidden laver were optimized. In order to
optimize the number of nodes in the hidden layer. several
training sessions were conducted with different numbers of
hidden nodes (from one to eleven). The root mean squared
error of traming (RMSET) and validanon (RMSEV) sets
were plotted versus the number of iterations for different
number of neurons at the hidden layer and the mumumum
value of RMSEV was recorded as the optimum value. Plot
of RMSET and RMSEV 1versus the number of nodes in the
hidden laver has been demonstrated in Figure L. It 1s clear
that nine nodes in hidden layer is optimum value.

This network consists of three mputs including the partial
molar heat capacity at imfimite dilution for the various
aqueous solutions (at T = 303.55 K and P = 0.1 MPa).
temperature and pressure. Then an ANN with architecture 3-
9-1 was generated. It 1s note worthy that traming of the
network was stopped when the RMSEV started to increases
1.e. when overtraining begins. The overtraining causes the
ANN to loose its prediction power.’” Therefore. during
training of the networks. it is desirable that iterations are
stopped when overtraining begins. To control the overtrain-
mg of the network during the traiung procedure, the values
of RMSET and RMSEV were calculated and recorded to
momitor the extent of the leaming in various iterations.
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Figure 1. Plot of RMSE for training and validation sets versus the
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Figure 2. Plot of RMSE for training and validation scts (for the
ANN model with architecture 3-9-1) versus the number of
iterations.

Results obtained showed that after 17250 iterations the
value of RMSEV started to increase and overfitting began
(Figure 2).

The generated ANN was then trained using the training set
for optimization of the weights and biases. For evaluation
predictive power of the generated ANN, an optimized
network was applied for prediction the heat capacity of
different aqueous solutions at various temperatures and
pressures in the prediction set, which were not used in the
modeling procedure. Values of partial molar heat capacity
for different aqueous solutions of various polar aromatic
compounds along with the calculated and 1PD values at
various temperatures and pressures for training, validation
and prediction sets have been shown in Table 1.

The correlation equation for all of the calculated values of
the heat capacity from the ANN model and the experimental
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values is as follows:

C} 2 {cal)=0.9606 C, , (exp) — 13.849 4)

p.2

N~ 116; R ~0.9859; MPD — 3.017;
RMSE — 19.642; F — 3950.35

Similarly, the correlation of C;;_z (cal) values versus C;_z
(exp) in prediction set gives equation (5):

C,, . (cal) = 0.9899 C, , (exp)— 11.53] {(5)

N=21;:R=0.9761: MPD = 4755,
RMSE=298,179; ' = 383.29

As can be seen the calculated values of the heat capacity
are in good agreement with those of the experimental values.
Plot of IPD for C;‘z values in prediction set versus the
experimental values of it has been illustrated in Figure 3.
The results demonstrate that the MPD value for C;_z values
in the prediction set is 4.755. As can be seen the model did
not show proportional and systematic error, because the
propagation of errors in both sides of zero are random
(Figure 3).

The correlation coefficient (R}, RMSE. MPD and stati-
stical F-value of the model for total, training, validation and
prediction sets show potential of the ANN model for
simulation the complicated nonlinear relationship between
the partial molar heat capacity at infinite dilution for
aqueous solutions of the various polar aromatic compounds
on the heat capacity in T — 303.55 K and P — 0.1 MPa,
temperature and pressure (Table 2).

Prediction the heat capacity using theoretical descrip-
tors. After feature selection (see section methods and
procedure), multi-parameter linear correlation of the heat
capacity versis the molecular descriptors in the training set
gives the results in Table 3. It can be seen that four descrip-
tors are appeared in the MLR model. These descriptors are:
complementary information content (neighborhood sym-
metry of 0O-order) (CICO), geary autocorrelation-lag3/
weighted by atomic masses (GATS3m), radia distribution
function-5.0/weighted by atomic masses {RDF050m) and
3D-MoRSF-signal 08/weighted by atomic polarizabilities
(Mor08p).

The correlation equation for the calculated values of C,, ,
versus the experimental values is as follows:

C), 5 (cal) =0.9993 C, , {exp) — 0.2194 (6)

N - 10: R - 0.99968; MPD - 0.1819;
RMSE -0.7938; F - 21880.83

‘The next step in this work is the generation of the ANN
mode] using theoretical descriptors. The artificial neural
network consists of six inputs (including four descriptors
appearing in the MLR model, temperature and pressure) and
one output for C; 5. Plot of RMSE'T and RMSEYV versus the
number of nodes in the hidden layer has been demonstrated
in Figure 4. [t is clear that three nodes in hidden layer is
optimum value.

Then an ANN with architecture 6-3-1 was generated. To
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Table 1. Values of partial molar heat capacity at infinite dilution for aqueous solutions of various polar aromatic compounds along with the
calculated and IPD (ndividual percent deviation) at various temperatures and pressures using the ANN models

No. Aqueoussolutions  Data set T P C, ,(exp) C, (calf IPD* C, (calf IPD*
1 phenol training 303.55 0.1 3251 31319 -3.66 318.06 =217
2 phenol validation 37223 22 3123 320.64 2.67 32515 4.11
3 phenol training 422.61 2.1 3148 323.88 2.88 334.24 6.18
4 phenol training 473.34 2.1 3276 329.08 0.45 347.02 5.93
5 phenol prediction 32352 3 3647 359.64 -1.39 366.56 0.51
6 phenol training 37338 10 467.5 45876 -1.87 454.17 -2.85
7 phenol training 374.58 10.2 4634 463.35 -0.01 458.31 -1.10
8 phenol validation 598.22 13.3 626.8 381.99 -7.13 61572 -1.77
9 phenel training 524.37 10.1 3344 360.9 1.83 354.09 —0.09
10 phenol training 3733 202 3827 37846 -1.11 37534 -1.92
11 phenol traming 398.17 20.2 4639 469.32 1.17 468.38 1.01
12 phenol training 474.89 30.3 311 3233 4.02 316,75 1.85
3 phenol training 5236 30.1 324.1 326.23 0.66 32342 -0.21
14 phenol validation 37322 30 369 349.56 0.77 342,33 -1.32
13 phenol training 37395 30 3506 350.17 =012 342.89 =220
16 phenol training 5982 304 3749 371.1 -101 374.58 -0.09
17 phenol prediction 6232 302 446.8 39794 -10.94 497.17 11.27
18 o-cresol training 303.55 0.1 407 406.84 -0.04 400.39 -1.62
19 o-cresol validation 37223 22 384 402.77 4.89 405.78 5.67
20 o-cresol traming 422.61 2.1 389.6 397.15 1.94 409.38 508
21 o-cresol traming 473.53 21 4165 406.96 =229 41531 —0.29
22 o-cresol prediction 52351 3 461.9 441.38 —4 .44 444,79 -3.70
3 o-cresol traming 573.3¢ 10.1 6233 624.79 024 642.81 313
24 o-cresol traming 574.28 10.1 616 630.64 238 65291 399
25 o-cresol traming 598.22 13.3 939.3 880.62 -329 898.77 —4.32
26 o-cresol training 32437 10.1 439.9 451.93 273 432.55 -1.67
27 o-cresol training 3733 202 5139 51344 -0.09 497.34 =322
28 o-cresol prediction 398.17 203 676.9 638 =279 70249 378
29 o-cresol training 474.8%9 303 3836 386.4 0.73 398.96 4.00
30 o-cresol training 3236 303 397.1 3985 0.35 407.29 2.57
31 o-cresol validation 37323 30.1 4114 447.07 8.67 441.72 7.37
32 o-cresol training 374.04 30 436.2 448.91 291 44346 1.67
33 o-cresol traming 598.2 304 338.6 519.84 -6.94 520,12 —6.89
34 o-cresol prediction 623.2 30.1 7479 670.06 -10.41 786,70 319
35 m-cresol traming 303.53 0.1 3973 394.61 —0.68 380.87 -1.87
36 m-cresol validation 372.24 22 363.8 392.58 7.91 398.54 9.35
37 m-cresol traming 422.62 2.1 3858 393,54 2.32 404.36 4.81
38 m-cresol traming 473.53 2.1 399.5 416.8 433 410.81 283
39 m-cresol training 32351 3 453.8 448.36 -12 432.17 -4.77
40 m-cresol training 37338 10 587.5 5379.85 -1.3 568.24 -3.28
41 m-cresol training 37448 10.2 5872 5386.69 -0.09 573.94 -2.26
42 m-cresol validation 39822 13.3 830.2 817.25 -1.56 784.74 =548
43 m-cresol training 32438 10.1 431.9 420.37 =267 42276 =212
44 m-cresol training 3733 202 463 451.64 =245 465.86 0.62
45 m-cresol prediction 398.17 203 6124 386.86 —4.17 608.29 —0.67
46 m-Cresol traming 474.89 304 3737 384.75 2,96 38724 362
47 m-Cresol traming 3236 30.3 3872 396.01 2.28 397.79 2.74
48 m-Cresol validation 37323 30.1 430.3 440,43 231 423.09 -1.26
49 m-cresol training 37373 298 4335 441.82 1.92 426.58 -1.60
30 m-cresol prediction 5982 30.2 490.7 308.79 3.69 480.43 -2.09
sl m-cresol training 623.17 302 647.9 648.69 0.12 669.99 341
32 p-cresol training 303.55 0.1 400.6 398.57 =0.51 39541 -1.30
33 p-cresol validation 37224 22 3704 39542 6.75 40243 8.65
34 p-cresol training 422.63 2.1 376.8 394.9 48 407.05 8.03
33 p-cresol training 473.53 2.1 3976 412.21 3.67 41281 3.83
36 p-cresol prediction 32331 3 450.7 444 .8 -1.31 43546 -3.38
37 p-cresol traming 5733 10 3799 396.26 282 383.38 0.63
38 p-cresol traming 5741 10.1 3763 601.48 4.37 38813 2.03

39 p-cresol traming 598.22 13.3 8092 §44.82 4.4 811.10 0.24
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Table 1. Continued

No. Aqueoussolutions  Data set T P C, 2 (exp) Cp o (caly’ IPD* Cpa (caly IPDY
60 p-cresol training 524.38 10.1 432.1 432.14 0.01 425,78 -146
61 p-cresol training 5733 202 459.8 469.55 212 473.14 2,90
62 p-cresol prediction 598.18 204 595.6 604.82 1.55 625.71 5.05
63 p-cresol traming 474.89 304 3672 38533 4.94 39329 7.11
64 p-cresol traming 5236 303 3836 396.88 346 402,51 4.93
63 p-cresol validation 57323 30.3 423 442.46 4.6 429.82 1.61
66 p-cresol traming 37378 299 420.7 444,19 338 431.68 261
67 p-eresol traming 5982 304 488 31212 4.94 488,55 0.11
68 p-cresol prediction 623.17 29.9 622.8 638.76 377 702.39 12.78
69 aniling traming 303.53 0.1 336.6 3423 1.69 3214 —4.51
70 aniline validation 37224 22 3275 331.28 115 32998 0.76
71 aniline training 4226l 2.1 3324 335.59 0.96 34048 243
72 aniline training 473.53 2.1 346.8 341.84 -143 354.56 224
73 aniline prediction 52332 5 3922 370.13 -5.63 376.53 -3.99
74 aniline validation 57426 10.1 519.9 48541 -6.63 484.48 -6.81
75 aniline training 5236 302 3486 3353 -381 32779 -5.97
76 aniline validation 37358 299 384.9 3524 -8.44 350.81 -8.86
77 o-toluidne training 303.53 0.1 410.5 411.29 0.19 39979 -2.61
78 o-toluidne prediction 37223 22 403.1 407.32 0.33 404.27 —0.20
79 o-toluidne training 422.61 2.1 4026 400403 —0.64 40915 1.63
80 o-toluidne training 473.53 2.1 4314 406.3 -3.82 41543 =370
81 o-toluidne validation 323353 5 4821 441.88 -8.34 4707 =727
82 o-toluidne training 573.69 10.1 638.6 640.67 0.32 663.27 3.86
83 o-toluidne training 52359 30 418.8 39947 -4.62 407.31 -2.74
84 o-toluidne prediction 57373 298 4727 451.19 -4.55 445,92 -5.66
85 m-toluidne training 303.55 0.1 406.2 405.8 -0.1 396.77 -2.32
86 m-toluidne validation 3722 2.1 406.1 401 42 -1.15 403.40 -0.67
87 m-toluidne training 42261 2.1 3934 396.64 0.82 407.58 3.60
88 m-toluidne training 473.53 2.1 4129 407.33 -1.33 41228 —0.13
89 m-toluidne prediction 323.53 3 4723 441.534 —-6.51 428.38 -9.30
90 m-toluidne validation 374.22 10.1 629.5 626.98 0.4 33274 -13.37
91 m-toluidne traming 52359 30 414 398.17 -3.82 403.11 -2.63
92 m-toluidne validation 373.73 298 436.4 448.2 -18 424.61 —6.97
93 p-toluidne training 303.53 0.1 4002 39847 —0.33 39229 -1.98
94 p-toluidne prediction 37224 22 3987 39503 -0.92 400.27 0.39
95 p-toluidne training 42261 2.1 3954 39491 -0.12 405.61 2,58
96 p-toluidne training 473,53 2.1 426.2 4127 -3.17 412.23 -3.28
97 p-toluidne validation 52353 3 476.5 44521 -6.57 437.80 -8.12
98 p-toluidne training 57371 10.1 639.6 59701 -6.66 607.16 -5.07
99 p-toluidne training 52339 30 4125 396.55 -3.87 400.60 -2.88
100 p-toluidne prediction 37375 299 4623 443.84 -3.99 433.11 —6.31
101 m-ammophenol training 30447 0.1 283 283.34 0.12 307.12 7.76
102 m-ammophenol validation 37223 22 3032 308.51 1.73 308.08 1.61
103 m-ammophenol training 422.61 2.1 3287 328.88 0.03 309.60 -3.81
104 m-ammophenol training 473.53 2.1 332 331.87 —0.04 312.64 -3.83
105 m-ammophenol prediction 52353 3 342.6 29357 -13.73 320.64 —6.41
106 m-ammophenol traming 574.33 10.1 340.5 340.54 0.01 363.57 7.36
107 m-aminophenol prediction 3236 302 3254 286.02 -12.1 308.36 =5.24
108 m-aminophenol validation 37355 299 3238 30703 =5.18 316.05 =-2.39
109  e-diaminobenzene training 303.55 0.1 3806.5 38627 =0.06 38851 0.52
110 o-diaminobenzene  prediction 37225 22 3958 39046 =1.335 39757 0.45
111 e-diaminobenzene training 422.65 2.1 4179 406.06 =283 403.67 =341
112 e-diaminobenzene training 473535 2.1 4339 4374 0.81 410.13 =548
113 o-diammobenzene  validation 523.55 3 463 461.28 —0.8 430.10 =7.30
114 o-diammobenzene  prediction 574.55 10.2 3253 531723 -1.534 360.63 6.73
113 o-diammobenzene traming 323.65 30.2 426.1 39231 -7.93 396.62 —6.92
116 o-diammobenzene  prediction 373.75 30 H32 431.98 -2.33 42331 —4.49

0
p

o

“The calculated values of C M

.+ and IPD using the ANN model with architecture 3-9-1. ®The calculated values of C
with architecture 6-3-1.

2 and IPD using the ANN madel
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Figure 3. Plot of the IPD (individual percent deviation) for
calculated values ol the heat capacity from the ANN maodel with
architecture 3-6-1 versus the experimental values of it for training,
validation and prediction scts.

Table 2. Statistical parameters obtained by the ANN model with
architecture 3-9-1 for total, training. validation and prediction scts”

Type of data sel N R MPD RMSE F

Total e 09839 3017 19.642  3930.33
Training 74 09915  2.163 14.608 415531
Validation 21 09841 4.262 22.975 584.37
Prediction 21 09761  4.755 29.179 383.29

“N is number of data set: R is the correlation coctlicient berween
calculated and the experimental values ol the partial molar heat capacity
atinlinite dilution: MPD is mean percent deviation: RMSE is rool mean
square ¢rror and 1 is the statistical I'-valug.

control the overtraining of the network during the training
procedure, the values of RMSET and RMSEYV were calcu-
lated and recorded to monitor the extent of the learning in
various iterations. Results obtained show that overfitting
does not exist for this ANN and training is stop after 80000
iterations (Figure 5).

For evaluation predictive power of the generated ANN, an
optimized network was applied for prediction the heat
capacity of different aqueous solutions at various temper-
atures and pressures in the prediction set.

Values of the partial molar heat capacity for different
aqueous solutions of various polar aromatic compounds
along with the calculated and 1PD values at various temper-
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Figure 5. Plot of RMSE for training and validation sets (for the
ANN model with architecture 0-3-1) versus the number ol
ilerations.

atures and pressures for training, validation and prediction
sets have been shown in Table 1.

As can be seen the calculated values of the heat capacity
are in good agreement with those of the experimental values.
The correlation equation for all of the calculated values of
the heat capacity from the ANN model and the experimental

Table 3. Theoretical descriptors, symbols and coefticients in the MI.R model

Name of descriptor Symbol Cocefticient
Complementary information content {ncighborhood symmetry ot 0-order) CICOo 382.718
Geary autocorrelation-lag3/weighted by atomic masses GATS3m -16751.82
Radial distribution function-3.0/veighted by atomic masscs RDF0350m -12.754
3D-MoRSF-signal 08/weighted by atomic polarizabilitics MorO8p —181.68
Constant -433.178
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Figure 6. Plot of the [PD ({individual percent deviation) tor
calculated values ol the heat capacity from the ANN model with
architecture 6-3-1versus the experimental values of it lor training,
validation and prediction scts.

Table 4. Statistical parameters obtained by the ANN model with
architecture 6-3-1 for total. training. validation and prediction scts®

Type of dataset N R MPD RMSE F

Total 16 09800 3.819 23015 276271
Training 74 09893 3.141 16.348  3303.60
Validation 21 09745 5386  33.028 338.61
Prediction 21 09815 4642 29.885 498.20

"N is number of data set: R is the corrclation coeflicient between
calculated and the experimental values of the partial molar heat capacity
atinlinite dilution: MPD is mean percent deviation: RMSE is rool mean
square ¢rror and 1 is the statistical 1'-valug.

values is as follows:
C}, 2 (cal) 09760 C;, , (exp)+ 8.894 (7

N=116; R = 0.9800; MPD = 3.819;
RMSE = 23.015; F =2762.71

Similarly. the correlation of Cj, , (cal) values versus C,,
(exp) in prediction set gives equation (8):

C,(cal)=1.154 C, ; (exp) - 71.783 (8

N-21:R - 0.9815: MPD - 4.642;
RMSE - 29.885: F — 493.20

The results demonstrate that the MPD value for (.‘;_,
values in the prediction set is 4.642.

Plot of IPD for Cp values in prediction set versus the
experimental values of it has been illustrated in Figure 6. As
can be seen the model did not show proportional and
systematic error, because the propagation of errors in bhoth
sides of zero are random.

The correlation coefficient (R), RMSE, MPD and stati-
stical F-value of the model for total, training, validation and
prediction sets show potential of the ANN model for
prediction the heat capacity of the aqueous solutions at
various temperatures and pressures (Table 4).
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As a result, it was found that the properly selected and
trained neural networks could fairly represent the depend-
ence of the heat capacity of the aqueous solutions on
theoretical descriptors, temperatures and pressure.

Conclusions

‘Iwo types of inputs have been applied tor prediction
partial molar heat capacity of aqueous solutions at infinite
dilution for various polar aromatic compounds {including
phenol, o-cresol, m-cresol, p-cresol, aniline, o-toluidine, m-
toluidine, p-toluidine, m-aminophenol. p-aminophenol and
o-diaminobenzene) over wide range of temperatures {303.55
-623.20 K) and pressures (0.1-30.2 MPa) using artificial
neural network models. In these models macroscopic and
microscopic properties of the compounds along with
temperature and pressure have been used as inputs and their
output is the partial molar heat capacity. The MPD values of
the models for prediction set are 4.755 and 4.642, respec-
tively. Then the optimized neural network could simulate the
complicated nonlinear relationship between the partial molar
heat capacity for various polar aromatic compounds on the
heat capacity in T = 303.55 K and P = 0.1 MPa {or theore-
tical molecular descriptors), temperature and pressure. As a
result ANNs can be used to predict the heat capacity at
higher temperatures and pressures using minimum number
of experiments.
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