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Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar 
heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range 
of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with 
back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa, 
temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs 
and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained 
neural networks could fairly represent dependence of the heat capacity on the molecular descriptors, 
temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and 
4.642, respectively.
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Introduction

Heat capacities of organic solutes in water are of great 
interest for calculating thermodynamic properties of organic 
aqueous systems at super ambient conditions. The temper­
ature integration of the heat capacity data allows obtaining 
the standard chemical potentials and activity coefficients 
needed for calculating phase and chemical equilibria at 
conditions of interest for geochemistry, power cycle 
chemistry and hydrothermal technologies.1,2 Only a limited 
amount of data are available at upper temperatures and 
pressures. The main reason is certainly a time consuming 
and costly task of the calorimeter construction since com­
mercial instruments allowing the heat capacity determin­
ation over a range of temperatures do not have the precision 
necessary for the calculation of heat capacity. For this 
reason, it is very valuable to predict the heat capacity at 
higher temperatures and pressures using minimum number 
of experiments. The prediction of physicochemical and 
biological properties/activities for organic molecules is the 
main objectives of the quantitative structure-property/ 
activity relationships (QSPRs/QSARs).3-9 QSPR/QSAR 
models are obtained on the basis of the correlation between 
the experimental values of the property/activity and descrip­
tors reflecting the molecular structure of the respective 
compounds. Since these theoretical descriptors are deter­
mined solely from computational methods, a priori predic­
tions of the properties/activities of compounds are possible, 
no laboratory measurements are needed thus saving time, 
space, materials, equipment and alleviating safety (toxicity) 
and disposal concerns.10,11

Various methods for constructing QSPR/QSAR models 

have been used including multi-parameter linear regression 
(MLR), principal component analysis (PCA) and partial 
least-squares regression (PLS).12-15 In addition, artificial 
neural networks (ANNs) have become popular due to their 
success where complex non-linear relationships exist amongst 
data.16-18 ANNs are biologically inspired computer programs 
designed to simulate the way in which the human brain 
processes information.18 ANNs gather their knowledge by 
detecting the patterns and relationships in data, not from 
programming. The wide applicability of ANNs stems from 
their flexibility and ability to model non-linear systems 
without prior knowledge of an empirical model. For these 
reason in recent years, ANNs have been used to a wide 
variety of chemical problems such as simulation of mass 
spectra, ion interaction chromatography, aqueous solubility 
and partition coefficient, simulation of nuclear magnetic 
resonance spectra, prediction of bioconcentration factor, 
solvent effects on reaction rate, prediction normalized polarity 
parameter in mixed solvent systems, acidity constant of 
organic compounds and dielectric constant of binary mix- 
tures.19-41

In this work an ANN model, for a first time, was generated 
for prediction partial molar heat capacity of aqueous 
solutions at infinite dilution for various polar aromatic 
compounds over wide range of temperatures (303.55-623.20 
K) and pressures (0.1-30.2 MPa) using three inputs (the 
partial molar heat capacity at infinite dilution for the various 
aqueous solutions at T = 303.55 K and P = 0.1 MPa, temper­
ature and pressure). In the next step, a MLR model was 
constructed between the heat capacity of the compounds and 
four theoretical descriptors. Then an ANN model using the 
theoretical descriptors, temperature and pressure was con­
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structed for prediction the heat capacity and the results were 
compared with the experimental values of them.

Methods and Procedure

Data set. A reliable database is critically important for the 
training of ANNs. Very recently partial molar heat capacity 
at infinite dilution have been determined for different aque­
ous solutions of polar aromatic compounds at various 
temperatures and pressures.1,2 In this work, the data for 
aqueous solutions of phenol, o-cresol, m-cresol, p-cresol, 
aniline, o-toluidne, m-toluidine, p-toluidine, m-aminophenol 
and o-diaminobenzene that they have at least eight values 
for the heat capacity at various temperatures and pressures 
have been used as data set. The data set was randomly 
divided into three groups: a training set, a validation set and 
a prediction set consisting of 74, 21 and 21 data, respec- 
tively.18,19 The training and validation sets were used for the 
model generation and the prediction set was used for 
evaluation of the generated model, because a prediction set 
is a better estimator of the ANN generalization ability than a 
monitoring (validation) set.

Descriptor generation. In order to calculate the theore­
tical descriptors, the z-matrices (molecular models) were 
constructed with the aid of HyperChem 7.0 and molecular 
structures were optimized using AM1 algorithm.42 In order 
to calculate theoretical descriptors, the molecular geometries 
of molecules were further optimized by Dragon package 
version 2.1.43 For this purpose the output of the HyperChem 
software for each compound fed into the Dragon program 
and the descriptors were calculated. As a result, a total of 
1481 theoretical descriptors were calculated for each 
compound in the data sets (11 compounds).

Feature selection. The theoretical descriptors were 
reduced by the following methods: 1) descriptors that are 
constant or nearly constant have been eliminated, because 
these descriptors can not define the variation of the property 
with structure; 2) in order to decrease the redundancy exist­
ing in the descriptors data matrix, the correlation coefficients 
for all pairs of remaining descriptors were determined. If a 
correlation coefficient was higher than 0.91, the descriptor 
with lower correlation with the heat capacity was eliminat- 
ed;44,45 3) the method of stepwise multi-parameter linear 
regression was used to select the most important descriptors 
and to calculate the coefficients relating the heat capacity to 
the descriptors.15 The MLR models were generated using 
spss/pc software package release 10.0.46

Neural network generation. The specification of a 
typical neural network model requires the choice of the type 
of inputs, the number of hidden layers, the number of 
neurons in each hidden layer and the connection structure 
between the inputs and the output layers. Three-layer 
networks with sigmoidal transfer function for neurons were 
designed. The initial weights were randomly selected bet­
ween 0 and 1. Before training, the input and output values 
were normalized between 0.1 and 0.9. The optimization of 
the weights and biases was carried out according to the 

resilient back-propagation algorithm.46 For evaluation pre­
dictive power of the networks, the trained ANNs were used 
to predict the heat capacity for 21 aqueous solutions 
included in the prediction set. The performances of ANNs 
are evaluated by the mean percentage deviation (MPD) and 
root-mean square error (RMSE), which are defined as 
follows:

100 N (PCalC - P冲) ,i\MPD = X   -------- — (1)
N i = 1 Pexp

RMSE = IX V (2) 

i = 1 N

where Piexp and Pical are experimental and calculated values 
of the heat capacity using the models.

Individual percent deviation (IPD) is defined as follows:

IPD = 100 x (3)

The processing of the data was carried using Matlab 6.5.47 
The neural networks were implemented using Neural 
Network Toolbox Ver. 4.0 for Matlab.48

Results and Discussion

Prediction the heat capacity without theoretical des­
criptors. There are no theoretical principles for choosing the 
proper network topology; so different structures were tested 
in order to obtain the optimal hidden neurons and training 
cycles.18,19 Before training the network, the numbers of 
nodes in the hidden layer were optimized. In order to 
optimize the number of nodes in the hidden layer, several 
training sessions were conducted with different numbers of 
hidden nodes (from one to eleven). The root mean squared 
error of training (RMSET) and validation (RMSEV) sets 
were plotted versus the number of iterations for different 
number of neurons at the hidden layer and the minimum 
value of RMSEV was recorded as the optimum value. Plot 
of RMSET and RMSEV versus the number of nodes in the 
hidden layer has been demonstrated in Figure 1. It is clear 
that nine nodes in hidden layer is optimum value.

This network consists of three inputs including the partial 
molar heat capacity at infinite dilution for the various 
aqueous solutions (at T = 303.55 K and P = 0.1 MPa), 
temperature and pressure. Then an ANN with architecture 3­
9-1 was generated. It is note worthy that training of the 
network was stopped when the RMSEV started to increases 
i.e. when overtraining begins. The overtraining causes the 
ANN to loose its prediction power.32 Therefore, during 
training of the networks, it is desirable that iterations are 
stopped when overtraining begins. To control the overtrain­
ing of the network during the training procedure, the values 
of RMSET and RMSEV were calculated and recorded to 
monitor the extent of the learning in various iterations.
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Figure 1. Plot of RMSE for training and validation sets versus the 
number of nodes in hidden layer.

Figure 2. Plot of RMSE for training and validation sets (for the 
ANN model with architecture 3-9-1) versus the number of 
iterations.

Results obtained showed that after 17250 iterations the 
value of RMSEV started to increase and overfitting began 
(Figure 2).

The generated ANN was then trained using the training set 
for optimization of the weights and biases. For evaluation 
predictive power of the generated ANN, an optimized 
network was applied for prediction the heat capacity of 
different aqueous solutions at various temperatures and 
pressures in the prediction set, which were not used in the 
modeling procedure. Values of partial molar heat capacity 
for different aqueous solutions of various polar aromatic 
compounds along with the calculated and IPD values at 
various temperatures and pressures for training, validation 
and prediction sets have been shown in Table 1.

The correlation equation for all of the calculated values of 
the heat capacity from the ANN model and the experimental 

values is as follows:

C ,2 (cal) = 0.9606 C ,2 (exp) + 13.849 (4)

N = 116; R = 0.9859; MPD = 3.017;
RMSE = 19.642; F = 3950.35

Similarly, the correlation of C；,2 (cal) values versus C；,2 

(exp) in prediction set gives equation (5):

C； ,2 (cal) = 0.9899 C； ,2 (exp) - 11.531 (5)

N = 21; R = 0.9761; MPD = 4.755;
RMSE = 29.179; F = 383.29

As can be seen the calculated values of the heat capacity 
are in good agreement with those of the experimental values. 
Plot of IPD for C^,2 values in prediction set versus the 
experimental values of it has been illustrated in Figure 3. 
The results demonstrate that the MPD value for C；,2 values 
in the prediction set is 4.755. As can be seen the model did 
not show proportional and systematic error, because the 
propagation of errors in both sides of zero are random 
(Figure 3).

The correlation coefficient (R), RMSE, MPD and stati­
stical F-value of the model for total, training, validation and 
prediction sets show potential of the ANN model for 
simulation the complicated nonlinear relationship between 
the partial molar heat capacity at infinite dilution for 
aqueous solutions of the various polar aromatic compounds 
on the heat capacity in T = 303.55 K and P = 0.1 MPa, 
temperature and pressure (Table 2).

Prediction the heat capacity using theoretical descrip­
tors. After feature selection (see section methods and 
procedure), multi-parameter linear correlation of the heat 
capacity versus the molecular descriptors in the training set 
gives the results in Table 3. It can be seen that four descrip­
tors are appeared in the MLR model. These descriptors are: 
complementary information content (neighborhood sym­
metry of 0-order) (CIC0), geary autocorrelation-lag3/ 
weighted by atomic masses (GATS3m), radia distribution 
function-5.0/weighted by atomic masses (RDF050m) and 
3D-MoRSF-signal 08/weighted by atomic polarizabilities 
(Mor08p).

The correlation equation for the calculated values of Cop,2 

versus the experimental values is as follows:

C；,2 (cal) = 0.9993 C；,2 (exp) + 0.2194 (6)

N = 10; R = 0.99968; MPD = 0.1819;
RMSE =0.7938; F = 21880.83

The next step in this work is the generation of the ANN 
model using theoretical descriptors. The artificial neural 
network consists of six inputs (including four descriptors 
appearing in the MLR model, temperature and pressure) and 
one output for C； 2 . Plot of RMSET and RMSEV versus the 
number of nodes in the hidden layer has been demonstrated 
in Figure 4. It is clear that three nodes in hidden layer is 
optimum value.

Then an ANN with architecture 6-3-1 was generated. To
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Table 1. Values of partial molar heat capacity at infinite dilution for aqueous solutions of various polar aromatic compounds along with the 
calculated and IPD (individual percent deviation) at various temperatures and pressures using the ANN models

No. Aqueous solutions Data set T P C°P,2 (exp) CP,2 (cal)a IPDa C，(cal)b IPDb
1 phenol training 303.55 0.1 325.1 313.19 -3.66 318.06 -2.17
2 phenol validation 372.23 2.2 312.3 320.64 2.67 325.15 4.11
3 phenol training 422.61 2.1 314.8 323.88 2.88 334.24 6.18
4 phenol training 473.54 2.1 327.6 329.08 0.45 347.02 5.93
5 phenol prediction 523.52 5 364.7 359.64 -1.39 366.56 0.51
6 phenol training 573.38 10 467.5 458.76 -1.87 454.17 -2.85
7 phenol training 574.58 10.2 463.4 463.35 -0.01 458.31 -1.10
8 phenol validation 598.22 13.3 626.8 581.99 -7.15 615.72 -1.77
9 phenol training 524.37 10.1 354.4 360.9 1.83 354.09 -0.09
10 phenol training 573.3 20.2 382.7 378.46 -1.11 375.34 -1.92
11 phenol training 598.17 20.2 463.9 469.32 1.17 468.58 1.01
12 phenol training 474.89 30.3 311 323.5 4.02 316.75 1.85
13 phenol training 523.6 30.1 324.1 326.23 0.66 323.42 -0.21
14 phenol validation 573.22 30 346.9 349.56 0.77 342.33 -1.32
15 phenol training 573.95 30 350.6 350.17 -0.12 342.89 -2.20
16 phenol training 598.2 30.4 374.9 371.1 -1.01 374.58 -0.09
17 phenol prediction 623.2 30.2 446.8 397.94 -10.94 497.17 11.27
18 o-cresol training 303.55 0.1 407 406.84 -0.04 400.39 -1.62
19 o-cresol validation 372.23 2.2 384 402.77 4.89 405.78 5.67
20 o-cresol training 422.61 2.1 389.6 397.15 1.94 409.38 5.08
21 o-cresol training 473.53 2.1 416.5 406.96 -2.29 415.31 -0.29
22 o-cresol prediction 523.51 5 461.9 441.38 -4.44 444.79 -3.70
23 o-cresol training 573.39 10.1 623.3 624.79 0.24 642.81 3.13
24 o-cresol training 574.28 10.1 616 630.64 2.38 652.91 5.99
25 o-cresol training 598.22 13.3 939.3 889.62 -5.29 898.77 -4.32
26 o-cresol training 524.37 10.1 439.9 451.93 2.73 432.55 -1.67
27 o-cresol training 573.3 20.2 513.9 513.44 -0.09 497.34 -3.22
28 o-cresol prediction 598.17 20.3 676.9 658 -2.79 702.49 3.78
29 o-cresol training 474.89 30.3 383.6 386.4 0.73 398.96 4.00
30 o-cresol training 523.6 30.3 397.1 398.5 0.35 407.29 2.57
31 o-cresol validation 573.23 30.1 411.4 447.07 8.67 441.72 7.37
32 o-cresol training 574.04 30 436.2 448.91 2.91 443.46 1.67
33 o-cresol training 598.2 30.4 558.6 519.84 -6.94 520.12 -6.89
34 o-cresol prediction 623.2 30.1 747.9 670.06 -10.41 786.70 5.19
35 m-cresol training 303.55 0.1 397.3 394.61 -0.68 389.87 -1.87
36 m-cresol validation 372.24 2.2 363.8 392.58 7.91 398.54 9.55
37 m-cresol training 422.62 2.1 385.8 395.54 2.52 404.36 4.81
38 m-cresol training 473.53 2.1 399.5 416.8 4.33 410.81 2.83
39 m-cresol training 523.51 5 453.8 448.36 -1.2 432.17 -4.77
40 m-cresol training 573.38 10 587.5 579.85 -1.3 568.24 -3.28
41 m-cresol training 574.48 10.2 587.2 586.69 -0.09 573.94 -2.26
42 m-cresol validation 598.22 13.3 830.2 817.25 -1.56 784.74 -5.48
43 m-cresol training 524.38 10.1 431.9 420.37 -2.67 422.76 -2.12
44 m-cresol training 573.3 20.2 463 451.64 -2.45 465.86 0.62
45 m-cresol prediction 598.17 20.3 612.4 586.86 -4.17 608.29 -0.67
46 m-cresol training 474.89 30.4 373.7 384.75 2.96 387.24 3.62
47 m-cresol training 523.6 30.3 387.2 396.01 2.28 397.79 2.74
48 m-cresol validation 573.23 30.1 430.5 440.45 2.31 425.09 -1.26
49 m-cresol training 573.75 29.8 433.5 441.82 1.92 426.58 -1.60
50 m-cresol prediction 598.2 30.2 490.7 508.79 3.69 480.45 -2.09
51 m-cresol training 623.17 30.2 647.9 648.69 0.12 669.99 3.41
52 p-cresol training 303.55 0.1 400.6 398.57 -0.51 395.41 -1.30
53 p-cresol validation 372.24 2.2 370.4 395.42 6.75 402.43 8.65
54 p-cresol training 422.63 2.1 376.8 394.9 4.8 407.05 8.03
55 p-cresol training 473.53 2.1 397.6 412.21 3.67 412.81 3.83
56 p-cresol prediction 523.51 5 450.7 444.8 -1.31 435.46 -3.38
57 p-cresol training 573.38 10 579.9 596.26 2.82 583.58 0.63
58 p-cresol training 574.1 10.1 576.3 601.48 4.37 588.13 2.05
59 p-cresol training 598.22 13.3 809.2 844.82 4.4 811.10 0.24
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Table 1. Continued

No. Aqueous solutions Data set T P Cp,2 (exp) Cp,2 (cal)a IPDa Cp,2 (cal)4 IPD4

60 p-cresol training 524.38 10.1 432.1 432.14 0.01 425.78 -1.46
61 p-cresol training 573.3 20.2 459.8 469.55 2.12 473.14 2.90
62 p-cresol prediction 598.18 20.4 595.6 604.82 1.55 625.71 5.05
63 p-cresol training 474.89 30.4 367.2 385.33 4.94 393.29 7.11
64 p-cresol training 523.6 30.3 383.6 396.88 3.46 402.51 4.93
65 p-cresol validation 573.23 30.3 423 442.46 4.6 429.82 1.61
66 p-cresol training 573.78 29.9 420.7 444.19 5.58 431.68 2.61
67 p-cresol training 598.2 30.4 488 512.12 4.94 488.55 0.11
68 p-cresol prediction 623.17 29.9 622.8 658.76 5.77 702.39 12.78
69 aniline training 303.55 0.1 336.6 342.3 1.69 321.44 -4.51
70 aniline validation 372.24 2.2 327.5 331.28 1.15 329.98 0.76
71 aniline training 422.61 2.1 332.4 335.59 0.96 340.48 2.43
72 aniline training 473.53 2.1 346.8 341.84 -1.43 354.56 2.24
73 aniline prediction 523.52 5 392.2 370.13 -5.63 376.53 -3.99
74 aniline validation 574.26 10.1 519.9 485.41 -6.63 484.48 -6.81
75 aniline training 523.6 30.2 348.6 335.3 -3.81 327.79 -5.97
76 aniline validation 573.58 29.9 384.9 352.4 -8.44 350.81 -8.86
77 o-toluidne training 303.55 0.1 410.5 411.29 0.19 399.79 -2.61
78 o-toluidne prediction 372.23 2.2 405.1 407.32 0.55 404.27 -0.20
79 o-toluidne training 422.61 2.1 402.6 400.03 -0.64 409.15 1.63
80 o-toluidne training 473.53 2.1 431.4 406.3 -5.82 415.43 -3.70
81 o-toluidne validation 523.53 5 482.1 441.88 -8.34 447.07 -7.27
82 o-toluidne training 573.69 10.1 638.6 640.67 0.32 663.27 3.86
83 o-toluidne training 523.59 30 418.8 399.47 -4.62 407.31 -2.74
84 o-toluidne prediction 573.73 29.8 472.7 451.19 -4.55 445.92 -5.66
85 m-toluidne training 303.55 0.1 406.2 405.8 -0.1 396.77 -2.32
86 m-toluidne validation 372.2 2.1 406.1 401.42 -1.15 403.40 -0.67
87 m-toluidne training 422.61 2.1 393.4 396.64 0.82 407.58 3.60
88 m-toluidne training 473.53 2.1 412.9 407.33 -1.35 412.28 -0.15
89 m-toluidne prediction 523.53 5 472.3 441.54 -6.51 428.38 -9.30
90 m-toluidne validation 574.22 10.1 629.5 626.98 -0.4 532.74 -15.37
91 m-toluidne training 523.59 30 414 398.17 -3.82 403.11 -2.63
92 m-toluidne validation 573.73 29.8 456.4 448.2 -1.8 424.61 -6.97
93 p-toluidne training 303.55 0.1 400.2 398.07 -0.53 392.29 -1.98
94 p-toluidne prediction 372.24 2.2 398.7 395.03 -0.92 400.27 0.39
95 p-toluidne training 422.61 2.1 395.4 394.91 -0.12 405.61 2.58
96 p-toluidne training 473.53 2.1 426.2 412.7 -3.17 412.23 -3.28
97 p-toluidne validation 523.53 5 476.5 445.21 -6.57 437.80 -8.12
98 p-toluidne training 573.71 10.1 639.6 597.01 -6.66 607.16 -5.07
99 p-toluidne training 523.59 30 412.5 396.55 -3.87 400.60 -2.88
100 p-toluidne prediction 573.75 29.9 462.3 443.84 -3.99 433.11 -6.31
101 m-aminophenol training 304.47 0.1 285 285.34 0.12 307.12 7.76
102 m-aminophenol validation 372.23 2.2 303.2 308.51 1.75 308.08 1.61
103 m-aminophenol training 422.61 2.1 328.7 328.88 0.05 309.60 -5.81
104 m-aminophenol training 473.53 2.1 332 331.87 -0.04 312.64 -5.83
105 m-aminophenol prediction 523.53 5 342.6 295.57 -13.73 320.64 -6.41
106 m-aminophenol training 574.35 10.1 340.5 340.54 0.01 365.57 7.36
107 m-aminophenol prediction 523.6 30.2 325.4 286.02 -12.1 308.36 -5.24
108 m-aminophenol validation 573.55 29.9 323.8 307.03 -5.18 316.05 -2.39
109 o-diaminobenzene training 303.55 0.1 386.5 386.27 -0.06 388.51 0.52
110 o-diaminobenzene prediction 372.25 2.2 395.8 390.46 -1.35 397.57 0.45
111 o-diaminobenzene training 422.65 2.1 417.9 406.06 -2.83 403.67 -3.41
112 o-diaminobenzene training 473.55 2.1 433.9 437.4 0.81 410.13 -5.48
113 o-diaminobenzene validation 523.55 5 465 461.28 -0.8 430.10 -7.50
114 o-diaminobenzene prediction 574.55 10.2 525.3 517.23 -1.54 560.65 6.73
115 o-diaminobenzene training 523.65 30.2 426.1 392.31 -7.93 396.62 -6.92
116 o-diaminobenzene prediction 573.75 30 443.2 431.98 -2.53 423.31 -4.49

aThe calculated values of Cp 2 and IPD using the ANN model with architecture 3-9-1. ‘The calculated values of Cp 2 and IPD using the ANN model 
with architecture 6-3-1.
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Figure 3. Plot of the IPD (individual percent deviation) for 
calculated values of the heat capacity from the ANN model with 
architecture 3-6-1 versus the experimental values of it for training, 
validation and prediction sets.

Table 2. Statistical parameters obtained by the ANN model with 
architecture 3-9-1 for total, training, validation and prediction setsa

Type of data set N R MPD RMSE F
Total 116 0.9859 3.017 19.642 3950.35
Training 74 0.9915 2.163 14.608 4155.31
Validation 21 0.9841 4.262 22.975 584.37
Prediction 21 0.9761 4.755 29.179 383.29
aN is number of data set; R is the correlation coefficient between 
calculated and the experimental values of the partial molar heat capacity 
at infinite dilution; MPD is mean percent deviation; RMSE is root mean 
square error and F is the statistical F-value.

control the overtraining of the network during the training 
procedure, the values of RMSET and RMSEV were calcu­
lated and recorded to monitor the extent of the learning in 
various iterations. Results obtained show that overfitting 
does not exist for this ANN and training is stop after 80000 
iterations (Figure 5).

For evaluation predictive power of the generated ANN, an 
optimized network was applied for prediction the heat 
capacity of different aqueous solutions at various temper­
atures and pressures in the prediction set.

Values of the partial molar heat capacity for different 
aqueous solutions of various polar aromatic compounds 
along with the calculated and IPD values at various temper-

Figure 4. Plot of RMSE for training and validation sets versus the 
number of nodes in hidden layer.

Figure 5. Plot of RMSE for training and validation sets (for the 
ANN model with architecture 6-3-1) versus the number of 
iterations.

atures and pressures for training, validation and prediction 
sets have been shown in Table 1.

As can be seen the calculated values of the heat capacity 
are in good agreement with those of the experimental values. 
The correlation equation for all of the calculated values of 
the heat capacity from the ANN model and the experimental

Table 3. Theoretical descriptors, symbols and coefficients in the MLR model

Name of descriptor Symbol Coefficient
Complementary information content (neighborhood symmetry of 0-order) CIC0
Geary autocorrelation-lag3/weighted by atomic masses GATS3m
Radial distribution function-5.0/weighted by atomic masses RDF050m
3D-MoRSF-signal 08/weighted by atomic polarizabilities Mor08p
Constant

382.718 
-16751.82

-12.754
-181.68 
-433.178
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Figure 6. Plot of the IPD (individual percent deviation) for 
calculated values of the heat capacity from the ANN model with 
architecture 6-3-1 versus the experimental values of it for training, 
validation and prediction sets.

Table 4. Statistical parameters obtained by the ANN model with 
architecture 6-3-1 for total, training, validation and prediction setsa

Type of data set N R MPD RMSE F
Total 116 0.9800 3.819 23.015 2762.71
Training 74 0.9893 3.141 16.348 3305.60
Validation 21 0.9745 5.386 33.028 358.61
Prediction 21 0.9815 4.642 29.885 498.20

bN is number of data set; R is the correlation coefficient between 
calculated and the experimental values of the partial molar heat capacity 
at infinite dilution; MPD is mean percent deviation; RMSE is root mean 
square error and F is the statistical F-value.

values is as follows:

CP ,2(cal) = 0.9760 C； ,2(exp) + 8.894 (7)

N =116; R = 0.9800; MPD = 3.819;
RMSE = 23.015; F = 2762.71

Similarly, the correlation of C； 2 (cal) values versus C； 2 

(exp) in prediction set gives equation (8):

C； ,2 (cal) = 1.154 C； ,2 (exp) - 71.783 (8)

N =21; R = 0.9815; MPD = 4.642;
RMSE = 29.885; F = 498.20

The results demonstrate that the MPD value for C； 2 

values in the prediction set is 4.642.
Plot of IPD for Cp values in prediction set versus the 

experimental values of it has been illustrated in Figure 6. As 
can be seen the model did not show proportional and 
systematic error, because the propagation of errors in both 
sides of zero are random.

The correlation coefficient (R), RMSE, MPD and stati­
stical F-value of the model for total, training, validation and 
prediction sets show potential of the ANN model for 
prediction the heat capacity of the aqueous solutions at 
various temperatures and pressures (Table 4).

As a result, it was found that the properly selected and 
trained neural networks could fairly represent the depend­
ence of the heat capacity of the aqueous solutions on 
theoretical descriptors, temperatures and pressure.

Conclusions

Two types of inputs have been applied for prediction 
partial molar heat capacity of aqueous solutions at infinite 
dilution for various polar aromatic compounds (including 
phenol, o-cresol, m-cresol, p-cresol, aniline, o-toluidine, m- 
toluidine, p-toluidine, m-aminophenol, p-aminophenol and 
o-diaminobenzene) over wide range of temperatures (303.55 
-623.20 K) and pressures (0.1-30.2 MPa) using artificial 
neural network models. In these models macroscopic and 
microscopic properties of the compounds along with 
temperature and pressure have been used as inputs and their 
output is the partial molar heat capacity. The MPD values of 
the models for prediction set are 4.755 and 4.642, respec­
tively. Then the optimized neural network could simulate the 
complicated nonlinear relationship between the partial molar 
heat capacity for various polar aromatic compounds on the 
heat capacity in T = 303.55 K and P = 0.1 MPa (or theore­
tical molecular descriptors), temperature and pressure. As a 
result ANNs can be used to predict the heat capacity at 
higher temperatures and pressures using minimum number 
of experiments.
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