DOI QR코드

DOI QR Code

Prediction Partial Molar Heat Capacity at Infinite Dilution for Aqueous Solutions of Various Polar Aromatic Compounds over a Wide Range of Conditions Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili) ;
  • Esmailian, Mahdi (Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili)
  • Published : 2007.09.20

Abstract

Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa, temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained neural networks could fairly represent dependence of the heat capacity on the molecular descriptors, temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and 4.642, respectively.

Keywords

References

  1. Censky, M.; Hnedkovsky, L.; Majer, V. J. Chem. Thermodyn. 2004, 37, 203
  2. Censky, M.; Hnedkovsky, L.; Majer, V. J. Chem. Thermodyn. 2005, 37, 225
  3. Katritzky, A. R.; Karelson, M.; Lobanov, V. S. Pure Appl. Chem. 1997, 69, 245 https://doi.org/10.1351/pac199769020245
  4. McClelland, H. E.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 2000, 40, 967 https://doi.org/10.1021/ci990137c
  5. Habibi-Yangjeh, A. Indian J. Chem. B 2004, 43, 1504
  6. Cronce, D. T.; Famini, G. R.; Soto, J. A. D.; Wilson, L. Y. J. Chem. Soc. Perkin Trans. 2 1998, 1293
  7. Engberts, J. B. F. N.; Famini, G. R.; Perjessy, A.; Wilson, L. Y. J. Phys. Org. Chem. 1998, 11, 261 https://doi.org/10.1002/(SICI)1099-1395(199804)11:4<261::AID-POC997>3.0.CO;2-0
  8. Nikolic, S.; Milicevic, A.; Trinajstic, N.; Juric, A. Molecules 2004 9, 1208 https://doi.org/10.3390/91201208
  9. Devillers, J. SAR and QSAR Environ. Res. 2004, 15, 501 https://doi.org/10.1080/10629360412331297443
  10. Karelson, M.; Lobanov, V. S. Chem. Rev. 1996, 96, 1027 https://doi.org/10.1021/cr950202r
  11. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, 2000
  12. Kramer, R. Chemometric Techniques for Quantitative Analysis; Marcel Dekker: New York, 1998
  13. Kuzmanovski, I.; Aleksovska, S. Chemom. Intell. Lab. Syst. 2003, 67, 167 https://doi.org/10.1016/S0169-7439(03)00092-3
  14. Barros, A. S.; Rutledge, D. N. Chemomet. Intell. Lab. Syst. 1998, 40, 65 https://doi.org/10.1016/S0169-7439(98)00002-1
  15. Garkani-Nejad, Z.; Karlovits, M.; Demuth, W.; Stimpfl, T.; Vycudilik, W.; Jalali-Heravi, M.; Varmuza, K. J. Chromatogr. A 2004, 1028, 287 https://doi.org/10.1016/j.chroma.2003.12.003
  16. Bose, N. K.; Liang, P. Neural Network Fundamentals; McGraw-Hill: New York, 1996
  17. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinhein, 1999
  18. Agatonovic-Kustrin, S.; Beresford, R. J. Pharm. Biomed. Anal. 2000, 22, 717
  19. Despagne, F.; Massart, D. L. Analyst 1998, 123, 157R https://doi.org/10.1039/a805562i
  20. Borosy, A. P.; Balogh, B.; Matyus, P. J. Mol. Struc.(Theochem) 2005, 729, 169 https://doi.org/10.1016/j.theochem.2005.01.054
  21. Bunz, A. P.; Braun, B.; Janowsky, R. Fluid Phase Equilib. 1999, 158, 367 https://doi.org/10.1016/S0378-3812(99)00058-8
  22. Homer, J.; Generalis, S. C.; Robson, J. H. Phys. Chem. Chem. Phys. 1999, 1, 4075 https://doi.org/10.1039/a904096j
  23. Goll, E. S.; Jurs, P. C. J. Chem. Inf. Comp. Sci. 1999, 39, 974 https://doi.org/10.1021/ci990071l
  24. Vendrame, R.; Braga, R. S.; Takahata, Y.; Galvao, D. S. J. Chem. Inf. Comput. Sci. 1999, 39, 1094 https://doi.org/10.1021/ci990326v
  25. Gaspelin, M.; Tusar, L.; Smid-Korbar, J.; Zupan, J.; Kristl, J. Int. J. Pharm. 2000, 196, 37
  26. Gini, G.; Cracium, M. V.; Konig, C.; Benfenati, E. J. Chem. Inf. Comput. Sci. 2004, 44, 1897 https://doi.org/10.1021/ci0401219
  27. Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K.; Sekiya, A. J. Fluorine Chem. 2002, 116, 163 https://doi.org/10.1016/S0022-1139(02)00128-8
  28. Koziol, J. Internet Electron. J. Mol. Des. 2002, 1, 80
  29. Wegner, J. K.; Zell, A. J. Chem. Inf. Comput. Sci. 2003, 43, 1077 https://doi.org/10.1021/ci034006u
  30. Valkova, I.; Vracko, M.; Basak, S. C. Anal. Chim. Acta 2004, 509, 179 https://doi.org/10.1016/j.aca.2003.12.035
  31. Sebastiao, R. C. O.; Braga, J. P.; Yoshida, M. I. Thermochimica Acta 2004, 412, 107 https://doi.org/10.1016/j.tca.2003.09.009
  32. Jalali-Heravi, M.; Masoum, S.; Shahbazikhah, P. J. Magn. Reson. 2004, 171, 176 https://doi.org/10.1016/j.jmr.2004.08.011
  33. Habibi-Yangjeh, A.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 139 https://doi.org/10.5012/bkcs.2005.26.1.139
  34. Habibi-Yangjeh, A.; Nooshyar, M. Physics and Chemistry of Liquids 2005, 43, 239 https://doi.org/10.1080/00319100500061233
  35. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. Bull. Korean Chem. Soc. 2005, 26, 2007 https://doi.org/10.5012/bkcs.2005.26.12.2007
  36. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M.; Nooshyar, M. J. Mol. Model. 2006, 12, 338 https://doi.org/10.1007/s00894-005-0050-6
  37. Habibi-Yangjeh, A.; Danandeh-Jenagharad, M. Indian J. Chem. B 2007, 46, 478
  38. Habibi-Yangjeh, A. Physics and Chemistry of Liquids (in press)
  39. Guha, R.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 2004, 44, 1440 https://doi.org/10.1021/ci0499469
  40. Mosier, P. D.; Counterman, A. E.; Jurs, P. C.; Clemmer, D. E. Anal. Chem. 2002, 74, 1360 https://doi.org/10.1021/ac0112059
  41. Guha, R.; Jurs, P. C. J. Chem. Inf. Model. 2005, 45, 800 https://doi.org/10.1021/ci050022a
  42. HyperChem, Release 7.0 for Windows, Molecular Modeling System, Hypercube Inc: 2002
  43. Todeschini, R.; Consonni, V.; Pavan, M. Dragon Software Version 2.1; 2002
  44. Hemmateenejad, B.; Akhond, M.; Miri, R.; Shamsipur, M. J. Chem. Inf. Comput. Sci. 2003, 43, 1328 https://doi.org/10.1021/ci025661p
  45. Hemmateenejad, M.; Safarpour, M. A.; Miri, R.; Nesari, N. J. Chem. Inf. Model. 2005, 45, 190 https://doi.org/10.1021/ci049766z
  46. SPSS for windows, Release 10.0; SPSS Inc.: 1989-1999
  47. Demuth, H.; Beale, M. Neural Network Toolbox; Mathworks: Natick, MA, 2000
  48. Matlab 6.5. Mathworks 1984-2002

Cited by

  1. Prediction of Heat Capacities of Hydration of Various Organic Compounds Using Partial Least Squares and Artificial Neural Network vol.42, pp.2, 2013, https://doi.org/10.1007/s10953-012-9943-z
  2. Prediction of basicity constants of various pyridines in aqueous solution using a principal component-genetic algorithm-artificial neural network vol.139, pp.12, 2008, https://doi.org/10.1007/s00706-008-0951-z
  3. Application of PC-ANN to Acidity Constant Prediction of Various Phenols and Benzoic Acids in Water vol.26, pp.5, 2008, https://doi.org/10.1002/cjoc.200890162
  4. Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water vol.140, pp.1, 2009, https://doi.org/10.1007/s00706-008-0049-7
  5. QSAR study of the 5-HT1A receptor affinities of arylpiperazines using a genetic algorithm–artificial neural network model vol.140, pp.5, 2009, https://doi.org/10.1007/s00706-008-0084-4
  6. Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks vol.41, pp.3, 2009, https://doi.org/10.1002/kin.20386
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.833