• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.031 seconds

Artificial Engine Development through Reinforcement Learning on Jul-Gonu Game (강화학습을 이용한 줄고누게임의 인공엔진개발)

  • Shin, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • Game program manufacture had been classed by 3D or on-line game etc. simply. But, atomized game programmer's kind now. So, Artificial Intelligence game programmer's role is important. This paper used reinforcement learning algorithm for Jul_Gonu board characters to learn, and so they can move intelligently. To compare a learned character to an random one, a board game was created, and then they fought against each other. As a result, learned character‘s ability was far more improved.

  • PDF

A Study on Prediction of Business Status Based on Machine Learning

  • Kim, Ki-Pyeong;Song, Seo-Won
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.2
    • /
    • pp.23-27
    • /
    • 2018
  • Korea has a high proportion of self-employment. Many of them start the food business since it does not require high-techs and it is possible to start the business relatively easily compared to many others in business categories. However, the closure rate of the business is also high due to excessive competition and market saturation. Cafés and restaurants are examples of food business where the business analysis is highly important. However, for most of the people who want to start their own business, it is difficult to conduct systematic business analysis such as trade area analysis or to find information for business analysis. Therefore, in this paper, we predicted business status with simple information using Microsoft Azure Machine Learning Studio program. Experimental results showed higher performance than the number of attributes, and it is expected that this artificial intelligence model will be helpful to those who are self-employed because it can easily predict the business status. The results showed that the overall accuracy was over 60 % and the performance was high compared to the number of attributes. If this model is used, those who prepare for self-employment who are not experts in the business analysis will be able to predict the business status of stores in Seoul with simple attributes.

Knowledge-guided artificial intelligence technologies for decoding complex multiomics interactions in cells

  • Lee, Dohoon;Kim, Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.239-249
    • /
    • 2022
  • Cells survive and proliferate through complex interactions among diverse molecules across multiomics layers. Conventional experimental approaches for identifying these interactions have built a firm foundation for molecular biology, but their scalability is gradually becoming inadequate compared to the rapid accumulation of multiomics data measured by high-throughput technologies. Therefore, the need for data-driven computational modeling of interactions within cells has been highlighted in recent years. The complexity of multiomics interactions is primarily due to their nonlinearity. That is, their accurate modeling requires intricate conditional dependencies, synergies, or antagonisms between considered genes or proteins, which retard experimental validations. Artificial intelligence (AI) technologies, including deep learning models, are optimal choices for handling complex nonlinear relationships between features that are scalable and produce large amounts of data. Thus, they have great potential for modeling multiomics interactions. Although there exist many AI-driven models for computational biology applications, relatively few explicitly incorporate the prior knowledge within model architectures or training procedures. Such guidance of models by domain knowledge will greatly reduce the amount of data needed to train models and constrain their vast expressive powers to focus on the biologically relevant space. Therefore, it can enhance a model's interpretability, reduce spurious interactions, and prove its validity and utility. Thus, to facilitate further development of knowledge-guided AI technologies for the modeling of multiomics interactions, here we review representative bioinformatics applications of deep learning models for multiomics interactions developed to date by categorizing them by guidance mode.

Computer Architecture Execution Time Optimization Using Swarm in Machine Learning

  • Sarah AlBarakati;Sally AlQarni;Rehab K. Qarout;Kaouther Laabidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.49-56
    • /
    • 2023
  • Computer architecture serves as a link between application requirements and underlying technology capabilities such as technical, mathematical, medical, and business applications' computational and storage demands are constantly increasing. Machine learning these days grown and used in many fields and it performed better than traditional computing in applications that need to be implemented by using mathematical algorithms. A mathematical algorithm requires more extensive and quicker calculations, higher computer architecture specification, and takes longer execution time. Therefore, there is a need to improve the use of computer hardware such as CPU, memory, etc. optimization has a main role to reduce the execution time and improve the utilization of computer recourses. And for the importance of execution time in implementing machine learning supervised module linear regression, in this paper we focus on optimizing machine learning algorithms, for this purpose we write a (Diabetes prediction program) and applying on it a Practical Swarm Optimization (PSO) to reduce the execution time and improve the utilization of computer resources. Finally, a massive improvement in execution time were observed.

An Analysis of Web-Based Adaptive Math Learning Program Components (웹 기반 맞춤형 수학 학습 프로그램 구성 요소 분석)

  • Huh, Nan
    • East Asian mathematical journal
    • /
    • v.34 no.4
    • /
    • pp.451-462
    • /
    • 2018
  • This study analyzed the learning components of the web-based adaptive math learning programs in order to develop adaptive math learning program using artificial intelligence. The components of the web-based adaptive math learning program set for analysis are classified into learning process presentation, concept learning, problem presentation, problem solving process, and learning result processing then analyzed three programs. As a result of analysis, the typical characteristic of components is that it uses a method of repeatedly presenting the same type of problem in order to learn one concept.

The Study of Criminal Lingo Analysis on Cyberspace and Management Used in Artificial Intelligence and Block-chain Technology

  • Yoon, Cheolhee;Lee, Bong Gyou
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.54-60
    • /
    • 2020
  • Online cybercrime has various causes. The criminal guilty language, Criminal lingo is active in the shaded area with the bilateral aspect of the word on cyber. It has been continuously producing massive risk factors in cyberspace. Criminals are shared and disseminated online. It has been linked with fake news and aids to suicide that has recently become an issue. Thus the criminal lingo has become a real danger factor on cyber interface. Recently, Criminal lingo is shared and distributed as cyber hazard information. It is transformed that damaging to the youth and ordinary people through the internet and social networks. In order to take action, it is necessary to construct an expert system based on AI to implement a smart management architecture with block-chain technology. In this paper, we study technically a new smart management architecture which uses artificial intelligence based decision algorithm and block-chain tracking technology to prevent the spread of criminal lingo factors in the evolving cyber world. In addition, through the off-line regular patrol program of police units, we proposed the conversion of online regular patrol program for "cyber harem area".

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

Educational Contents for Concepts and Algorithms of Artificial Intelligence

  • Han, Sun Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • This study is to design and to develop the educational contents to enhance artificial intelligence literacy. First, we designed artificial intelligence education contents and constructed education programs. The contents are composed of a total of 15 lectures in 8 AI domains. The contents contain the elements of knowledge-skill-attitude, and 5 learning steps. The developed contents were organized in the form of online materials and included simulations and worksheets to directly manipulate and explore the concepts and algorithms of AI. In addition, we provided evaluation questions for each content. To examine the suitability of content, we conducted a validity test for experts. As a result of the content validity test, the overall average was .71 or higher, and the CVI value of the class suitability was .82, indicating a high validity. We are expected to use the contents developed in this study as an effective program to improve AI literacy in university liberal arts education.

Structure and expression of legal principles for artificial intelligence lawyers (인공지능 변호사를 위한 법리의 구조화와 그 표현)

  • Park, Bongcheol
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.1 no.1
    • /
    • pp.61-79
    • /
    • 2021
  • In order to implement an artificial intelligence lawyer, this study looked at how to structure legal principles, and then gave specific examples of how structured legal principles can be expressed in predicate logic. While previous studies suggested a method of introducing predicate logic for the reasoning engine of artificial intelligence lawyers, this study focused on the method of expressing legal principles with predicate logic based on the structural appearance of legal principles. Jurisprudence was limited to the content of articles and precedents, and the vertical hierarchy leading to 'law facts - legal requirements - legal effect' and the horizontal hierarchy leading to 'legal effect - defense - defense' were examined. In addition, legal facts were classified and explained that most of the legal facts can be usually expressed in unary or binary predicates. In future research, we plan to program the legal principle expressed in predicate logic and realize an inference engine for artificial intelligence lawyers.

Preservice teacher's understanding of the intention to use the artificial intelligence program 'Knock-Knock! Mathematics Expedition' in mathematics lesson: Focusing on self-efficacy, artificial intelligence anxiety, and technology acceptance model (수학 수업에서 예비교사의 인공지능 프로그램 '똑똑! 수학 탐험대' 사용 의도 이해: 자기효능감과 인공지능 불안, 기술수용모델을 중심으로)

  • Son, Taekwon
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.401-416
    • /
    • 2023
  • This study systematically examined the influence of preservice teachers' self-efficacy and AI anxiety, on the intention to use AI programs 'knock-knock! mathematics expedition' in mathematics lessons based on a technology acceptance model. The research model was established with variables including self-efficacy, AI anxiety, perceived ease of use, perceived usefulness, and intention of use from 254 pre-service teachers. The structural relationships and direct and indirect effects between these variables were examined through structural equation modeling. The results indicated that self-efficacy significantly affected perceived ease of use, perceived usefulness, and intention to use. In contrast, AI anxiety did not significantly influence perceived ease of use and perceived usefulness. Perceived ease of use significantly affected perceived usefulness and intention to use and perceived usefulness significantly affected intention to use. The findings offer insights and strategies for encouraging the use of 'knock-knock! mathematics expedition' by preservice teachers in mathematics lessons.