• Title/Summary/Keyword: Artificial Intelligence Marketing

Search Result 94, Processing Time 0.023 seconds

Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model (다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석)

  • Wo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2020
  • The Topic Modeling research, the methodology for deduction keyword within literature, has become active with the explosion of data from digital society transition. The research objective is to investigate research trends in D.N.A.(Data, Network, Artificial Intelligence) field using DTM(Dynamic Topic Model). DTM model was applied to the 1,519 of research projects with SW·A.I technology classifications among ICT(Information and Communication Technology) field projects between 6 years(2015~2020). As a result, technology keyword for D.N.A. field; Big data, Cloud, Artificial Intelligence, extended keyword; Unstructured, Edge Computing, Learning, Recognition was appeared every year, and accordingly that the above technology is being researched inclusively from other projects can be inferred. Finally, it is expected that the result from this paper become useful for future policy·R&D planning and corporation's technology·marketing strategy.

Suggestions for establishing a smart system to revitalize the local traditional market (지역 전통시장 활성화를 위한 지능형 시스템 구축 제언)

  • Lee, Junghun;Cho, Jungwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.191-193
    • /
    • 2022
  • The advent of the 4th Industrial Revolution due to the trigger of digital technologies such as artificial intelligence and big data has caused many changes in society, culture, and industry. However, traditional markets in each region are not responding quickly to new distribution environments and consumer changes. In particular, in the case of traditional markets in Jeju, regional characteristics such as marketing strategies for tourists visiting Jeju have not been utilized. Therefore, this study proposes the establishment of a smart traditional market based on big data and artificial intelligence that utilizes the regional characteristics of Jeju. The research contents include customer profiling through visitor big data analysis, providing tourist movement results through traffic analysis, providing real-time popular product charts, and developing video-based fire and crime prevention functions.

  • PDF

Development of Voice Guide Service for Pharmaceutical Information based on Ontology (온톨로지 기반의 의약정보 음성 안내 서비스 개발)

  • Lee, Kyung-Min;Quan, Zhixuan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.1-14
    • /
    • 2017
  • This research proposes a method to provide visually impaired persons with better medical services and to mitigate their difficulties in taking medicines in their daily lives. Normally, pharmaceutical information are distributed in a form of printed materials, but it is not accessible by those who are visually impaired. Since persons who are visually impaired by accidents or diseases are required to take more types of medicines compared to other handicapped persons, and thus it is an important matter to let them have appropriate medicines at the right time. Although there are several web sites which are run by the Ministry of Health and Welfare providing pharmaceutic information, the information on those web sites are duplicated and some of the menus are similar, and thus giving users difficulties and discomfort in finding appropriate pharmaceutical information. Since ontology can define and describe the resource in an information system more clearly, in this research, an ontology consists of pharmaceutical information and knowledge on medicines is constructed to give patients more precise information more efficiently. Also, a service in which users can have voice guidance on pharmaceutical information retrieve from the ontology-based information system by contacting RFID sticker on the medicine to the reader.

A Study on the prediction dyspnea-induced attributes of linear regression-based Article

  • Lee, Kwang-Keun;Jeon, Gyu-Hyeon
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.2
    • /
    • pp.17-22
    • /
    • 2018
  • According to the World Health Organization, the top 10 causes of death worldwide include heart disease. Heart diseases include coronary disease, which induces acute myocardial infarction. Ticagrelor drugs are being used to treat acute alliances, but it has become difficult to breathe due to the drugs. In a related study, Tobias predicted that uric acid causes acute respiratory distress independently of other factors, including BNP. And in the Ahmad study, serum uric acid numbers were related to the left ventricle depending on the level of uric acid. Experimental data are data used after 155 patients who received coronary intervention took ticagrelor. The research methods were leveraged by gradient decent algorithm and linear regression. In order to avoid overfitting in the experiment, training data and test data were separated into 70 and 30 percent respectively. The experimental results lacked the predictability of other attributes except DT in the correlation coefficient and crystal coefficient. However, all attributes related to dyspnea other than DT are determined to be related to causing relaxation of the heart in the left ventricle. Therefore, the attribute causing dyspnea is determined to be an attribute causing relaxation of the heart of the DT and left ventricle.

Integration of Heterogeneous Models with Knowledge Consolidation (지식 결합을 이용한 서로 다른 모델들의 통합)

  • Bae, Jae-Kwon;Kim, Jin-Hwa
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.177-196
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model. Integrated models consist of four models: ASFM model which combines Association Rule(A) and Frequency Matrix(B), ASRI model which combines Association Rule(A) and Rule Induction(C), FMRI model which combines Frequency Matrix(B) and Rule Induction(C), and ASFMRI model which combines Association Rule(A), Frequency Matrix(B), and Rule Induction(C). The data set for the tests is collected from a convenience store G, which is the number one in its brand in S. Korea. This data set contains sales information on customer transactions from September 1, 2005 to December 7, 2005. About 1,000 transactions are selected for a specific item. Using this data set. it suggests an integrated model predicting whether a customer buys or not buys a specific product for target marketing strategy. The performance of integrated model is compared with that of other models. The results from the experiments show that the performance of integrated model is superior to that of all other models such as Association Rule, Frequency Matrix, and Rule Induction.

A Study on 2D Character Response of Speed Method Using Unity

  • HAN, Dong-Hun;CHOI, Jeong-Hyun;LIM, Myung-Jae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.35-40
    • /
    • 2021
  • In this paper, many game companies seek better optimization and easy-to-apply logic to prolong the game's lifespan and provide a better game environment for users. Therefore, research will be showing the game's key input response method called RoS (Response of Speed). The purpose of the method is to simultaneously perform various motions with the character showing natural motion without errors even if the character's control key is duplicated. This method is for the developers so they can reduce bugs and development time in future game development. To be used with quickly generating game environments, the new method compares with the popular motion method, so which method is faster and can adapt to diverse games. The paper suggested that the Response of Speed method is a better method for optimizing frames and reducing the number of reacting seconds by showing a faster response and speed). With the method popularity of scrollers, many 2D cross-scroll games follow the formula of Dash, Shoot, Walk, Stay, and Crouch. With the development of game engines, it is becoming easier to implement them. Therefore, although the method presented in the above paper differs from the popular method, it is expected that there will be no great difficulty in applying it to the game because transplantation is easy. In the future, we plan to study to minimize the delay of each connection of the character motion so that the game can be optimized to best.

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Verification of the Effectiveness of Artificial Intelligence Education for Cultivating AI Literacy skills in Business major students

  • SoHyun PARK
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Purpose: In the era of the Fourth Industrial Revolution, individuals equipped with fundamental understanding and practical skills in artificial intelligence (AI) are essential. This study aimed to validate the effectiveness of AI education for enhancing AI literacy among business major student. Research design, data and methodology: Data for analyzing the effectiveness of the AI Fundamental Education Program for business major students were collected through surveys conducted at the beginning and end of the semester. Structural equation modeling was employed to perform basic statistical analyses regarding gender, grade, and prior software (SW) education duration. To validate the effectiveness of AI education, seven variables - AI interest, AI perception, data analysis/utilization, AI projects, AI literacy, AI self-efficacy, and AI learning persistence - were defined and derived. Results: All seven operationally defined variables showed statistically significant positive changes. The average differences were observed as follows: 0.47 for AI interest, 0.32 for AI perception, 0.37 for data analysis/utilization, 0.27 for AI projects, 0.25 for AI literacy, 0.39 for AI self-efficacy, and 0.41 for AI learning persistence. Statistically, AI interest exhibited the most substantial average difference. Conclusions: Through this study, the applied AI education was confirmed to enhance learners' overall competencies in AI, proving its utility and effectiveness in AI literacy education for business major students. Future research endeavors should build upon these results, focusing on ongoing studies related to AI education programs tailored to learners from diverse academic backgrounds and conducting continuous efficacy evaluations.

Fault diagnosis of linear transfer robot using XAI

  • Taekyung Kim;Arum Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.121-138
    • /
    • 2024
  • Artificial intelligence is crucial to manufacturing productivity. Understanding the difficulties in producing disruptions, especially in linear feed robot systems, is essential for efficient operations. These mechanical tools, essential for linear movements within systems, are prone to damage and degradation, especially in the LM guide, due to repetitive motions. We examine how explainable artificial intelligence (XAI) may diagnose wafer linear robot linear rail clearance and ball screw clearance anomalies. XAI helps diagnose problems and explain anomalies, enriching management and operational strategies. By interpreting the reasons for anomaly detection through visualizations such as Class Activation Maps (CAMs) using technologies like Grad-CAM, FG-CAM, and FFT-CAM, and comparing 1D-CNN with 2D-CNN, we illustrates the potential of XAI in enhancing diagnostic accuracy. The use of datasets from accelerometer and torque sensors in our experiments validates the high accuracy of the proposed method in binary and ternary classifications. This study exemplifies how XAI can elucidate deep learning models trained on industrial signals, offering a practical approach to understanding and applying AI in maintaining the integrity of critical components such as LM guides in linear feed robots.

Application of Market Basket Analysis to One-to-One Marketing on Internet Storefront (인터넷 쇼핑몰에서 원투원 마케팅을 위한 장바구니 분석 기법의 활용)

  • 강동원;이경미
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • One to one Marketing (a.k.a. database marketing or relationship marketing) is one of the many fields that will benefit from the electronic revolution and shifts in consumer sales and advertising. As a component of intelligent customer services on Internet storefront, this paper describes technology of providing personalized advertisement using the market basket analysis, a well-Known data mining technique. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customer's data. However, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed Knowledge base. In this paper, using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store.

  • PDF