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Abstract 

Artificial intelligence is crucial to manufacturing productivity. Understanding the difficulties in producing 

disruptions, especially in linear feed robot systems, is essential for efficient operations. These mechanical tools, 

essential for linear movements within systems, are prone to damage and degradation, especially in the LM 

guide, due to repetitive motions. We examine how explainable artificial intelligence (XAI) may diagnose wafer 

linear robot linear rail clearance and ball screw clearance anomalies. XAI helps diagnose problems and 

explain anomalies, enriching management and operational strategies. By interpreting the reasons for anomaly 

detection through visualizations such as Class Activation Maps (CAMs) using technologies like Grad-CAM, 

FG-CAM, and FFT-CAM, and comparing 1D-CNN with 2D-CNN, we illustrates the potential of XAI in 

enhancing diagnostic accuracy. The use of datasets from accelerometer and torque sensors in our experiments 

validates the high accuracy of the proposed method in binary and ternary classifications. This study 

exemplifies how XAI can elucidate deep learning models trained on industrial signals, offering a practical 

approach to understanding and applying AI in maintaining the integrity of critical components such as LM 

guides in linear feed robots. 
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1. Introduction 

To enhance productivity, maintenance of production equipment is vital. Employing machine learning 

techniques to predict product malfunctions is increasingly common. However, from a management perspective, 

understanding the causes of failures and identifying necessary maintenance areas is essential. This 

understanding informs the development of new equipment, the creation of procedures for fault handling, and 

the establishment of governance systems. 

The development and application of explainable artificial intelligence (XAI) is crucial in these respects. Yet, 
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empirical evidence on how XAI can be beneficial is limited, raising the need for research in the application 

and management of smart factories utilizing the Internet of Things and AI. This research gap is particularly 

evident in the context of linear feed robots, which are crucial in various transportation tasks in industrial 

machinery and automated production lines. These robots, operating under high load conditions and continuous 

friction, are prone to wear and tear on components like rails, bearings, and blocks in linear feed guides. A 

failure in these components can lead to breakdowns in the entire system. Thus, the integration of XAI in 

diagnosing and monitoring the state of such components not only aids in pre-emptive maintenance but also 

provides crucial insights for future technological advancements and governance in smart manufacturing 

environments. 

Linear feed robots are mechanical tools that require linear movement within a system. They are widely used 

in various transportation tasks requiring linear motion in industrial machinery, automated production lines, and 

industrial robots. In such environments, linear feed robots are employed for repetitive tasks under diverse 

conditions. High load conditions of transportation tasks, along with continuous friction in production lines and 

robots, lead to the aging and damage of rails, bearings, and blocks in linear feed guides. Therefore, diagnosing 

and monitoring the state of LM guides is crucial, as failures in the linear feed guide can lead to breakdowns of 

the entire system that incorporates them. Recently, various fault diagnosis methods based on data have been 

researched. 

Data-based methods, aimed at obtaining generalized models, utilize large amounts of data to identify its 

characteristics and diagnose faults based on these findings. Non-learning-based methods such as KNN (K-

Nearest Neighbors) [1] and PCA (Principal Component Analysis) [2], as well as learning-based methods 

including artificial neural networks [3], fuzzy logic [4], and support vector machines [5], can be used for data-

based fault diagnosis. Furthermore, with the advancement of data accumulation, computational speed, and the 

development of smart manufacturing, various data-based fault diagnoses using deep learning are being studied.  

Multilayer perceptrons [3], [6], sparse deep stacking networks [7], stack quality-based autoencoders [8], 

deep belief networks [9], long short-term memory networks [10], and CNNs [11]-[14] are primarily researched 

for fault diagnosis using deep learning. These deep learning models, with higher accuracy than traditional 

machine learning approaches like KNN and PCA, are being utilized in various industrial applications. Model-

based or signal-based diagnostics offer the advantage of incorporating management ideas regarding specific 

issues, allowing for a strategic allocation of resources and capabilities for management. The interpretability of 

such models facilitates policy formulation, enhancing efficiency and effectiveness in institutional and 

managerial aspects. Compared to these advantages, deep learning, despite its superior performance, carries 

both positive and negative aspects due to its limited explainability. Therefore, integrating explainability into 

existing deep learning methods can offer significant benefits in managing and controlling production in smart 

factories. This integration allows for the interpretation of specific problems, aiding in strategic planning for 

resource and capacity management. 

When a model’s functioning can be explained, it becomes easier to establish policies that address 

institutional flaws or managerial inefficiencies. In this context, while deep learning’s performance is 

commendable, its limited explainability presents a challenge. Balancing the positive aspects of deep learning’s 

performance with the need for explainability is crucial, especially in the context of smart factory management 

and production control. Enhancing the explainability of deep learning models can significantly contribute to 

more efficient and effective decision-making processes in industrial settings.  

Deep learning models, traditionally perceived as ‘black boxes,’ are now being unraveled through 
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advancements in explainable artificial intelligence (XAI). Recent research in XAI, specifically in deep learning 

contexts, has significantly mitigated the notion of these models as inscrutable [15, 16]. However, a substantial 

portion of XAI research is predominantly focused on image data, which inherently allows for more intuitive 

interpretation. Translating these XAI techniques, such as Gradient-Class Activation Map (Grad-CAM), to 

diagnostic models that utilize signal data poses a notable challenge. This difficulty underscores the necessity 

for dedicated XAI research tailored to signal data applications. Signal data, often derived from sensor networks 

within the Internet of Things (IoT) ecosystem, is a rich vein of real-time, analyzable information. This data 

type, ubiquitously sourced from mobile devices, smart city infrastructures, and various IoT deployments, 

provides an easily accessible and analyzable information stream. Considering the widespread availability and 

the critical role of signal data, it is imperative to direct XAI research towards better understanding and 

interpreting it. By aligning XAI development with signal data, we can more effectively tap into the expansive 

potential of IoT networks, enhancing applications across diverse sectors, including smart manufacturing, urban 

planning, and beyond. 

In this study, we propose an XAI-based fault diagnosis method to detect clearance anomalies in wafer linear 

robots used in semiconductor equipment, applying the methods from references [17] and [18] that utilize Grad-

CAM, FG-CAM, and FFT-CAM. For the detection of abnormal states, vibration and torque sensors are used, 

and the reasons for anomaly diagnosis in the model are interpreted by comparing 1D-CNN and 2D-CNN and 

visualizing the frequency band of Class Activation Maps (CAMs) using Grad-CAM, FG-CAM, and FFT-CAM. 

In conclusion, this study makes significant contributions in both engineering and management realms. From 

an engineering perspective, we have successfully proposed a novel method for detecting clearance anomalies 

in wafer linear robots used in semiconductor manufacturing. This method leverages the capabilities of 

explainable artificial intelligence (XAI), employing advanced techniques such as Grad-CAM, FG-CAM, and 

FFT-CAM for precise diagnosis. By utilizing vibration and torque sensors, our approach not only identifies 

abnormal states but also interprets the underlying reasons for these anomalies, offering a deeper understanding 

through the comparative analysis of 1D-CNN and 2D-CNN, and the visualization of Class Activation Maps 

(CAMs). From a management standpoint, our study serves as a pioneering example of applying XAI in smart 

manufacturing. 

The insights derived from signal data-based XAI development and design provide valuable guidance for 

strategic decision-making in industrial settings. Our research illustrates how XAI can enrich management 

strategies, allowing for the formulation of more informed policies and practices. In doing so, it addresses a 

critical gap in the literature, demonstrating the practical application of XAI in managing and enhancing the 

operational efficiency of smart factories. Through this dual contribution, we believe our work not only 

advances the field of intelligent manufacturing systems but also lays the groundwork for future research aimed 

at integrating cutting-edge AI technologies into the realm of industrial management and operations. The 

structure of the paper is as follows: Chapter 2 describes the proposed fault diagnosis for linear feed robots, 

Chapter 3 discusses the composition of the dataset and experimental results, and the final Chapter 4 presents 

the conclusion. 

 

2. Clearance Anomaly Diagnostic System for Linear Feed Robots 

2.1 Structure of the XAI-Based Fault Diagnosis Method 
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The configuration of the clearance anomaly diagnostic system is as shown in Figure 1. The target one-axis 

feed robot is a wafer transport robot used in semiconductor equipment. First, vibration signals and torque 

signals are detected from the accelerometer and torque sensor. The torque signal has the advantage of being 

detectable through the torque sensor mounted on the equipment or the current sensor of the servo driver. The 

detected signals undergo data preprocessing before being used as input for the model. The input data is divided 

into 1D-CNN and 2D-CNN models, with the 1D-CNN model using raw signals in the time domain, and the 

2D-CNN model generating a spectrogram that visualizes the power spectrum obtained through short-time 

Fourier Transformation (STFT). Spectrograms are widely used in visualizing audio signals [19]. The size of 

the spectrogram is adjusted to fit the input of the recognition algorithm. Subsequently, anomaly classification 

is performed using both one-dimension convolutional neural network (1D-CNN) and two-dimension 

convolutional neural network (2D-CNN) models. These models extract and learn different features and use 

this information to classify the presence and type of anomalies. Additionally, to visualize the classification 

results, the 2D-CNN model utilizes the Grad-CAM technique, while the 1D-CNN model explains the 

prediction results in the frequency domain using FFT-CAM and FG-CAM. 

Figure 1. The proposed diagnostic system 

(1) STFT  

The STFT X(τ,w) of a signal x(t) is given by equation (1) as the Fourier transform of the product of x(t) and 

a window function w(τ), which is non-zero only over a short time interval. Window functions commonly used 

include the Hann window or the Gaussian window [20].  

𝑋(𝜏, 𝑤) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡
∞

−∞
𝑑𝑡               (1) 

(2) Spectrogram  

The spectrogram visualizes the values of |𝑋(𝜏, 𝑤)|2 obtained from the STFT as a two-dimensional plot 

along the time and frequency axes, representing amplitude through color or brightness variations [19]. 

 

(3) 1D-CNN and 2D-CNN Models 

The 1D-CNN is a neural network structure specialized for processing one-dimensional data and is widely 

used in the field of fault diagnosis utilizing deep learning. This model is particularly suitable for handling one-

dimensional signals such as time series data and has the advantage of being able to process the data directly 

without additional transformation. Due to these characteristics, the 1D-CNN can be used to save computational 

effort even in cases requiring transformations to the frequency domain, such as Fourier or wavelet 
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transformations [17]. For signal data used in fault diagnosis, both torque and vibration signals are utilized. The 

length of the torque signal is set to 1,000 samples for the entire length, and the vibration signal is down-sampled 

by 1/10 to a length of 47,514 samples for use as model input. The 1D-CNN model uses the ReLU (Rectified 

Linear Unit) function as the activation function and transforms filter values by utilizing the maximum values 

in the kernel through the Max Pooling layer. Additionally, it performs classification tasks using the Global 

Average Pooling (GAP) layer to utilize the extracted features of filters. The experimented 1D-CNN model 

includes two 1D-CNN layers, each with a different number of filters. Specifically, 64 and 32 filters were used, 

and the kernel sizes were designed to be 100 and 50. These 1D-CNN layers, designed in this way, extract a 

wide range of signal characteristics and enable efficient data processing by reducing the size through Max 

Pooling. Before the output layer, there is one hidden layer, which processes the data using 100 filters. The 

constructed 1D-CNN model effectively analyzes the given signal data and performs discriminative tasks for 

fault diagnosis. 

The 2D-CNN model, known as the VGG (Visual Geometry Group), is a deep learning model for image 

recognition capable of classifying the contents of images sized 224 × 224 into classes. The VGG-16 and 

VGG-19 models are used, each having 16 and 19 convolutional layers, respectively. In applying deep learning 

to the diagnosis of industrial systems, obtaining sufficient data to train the model can be challenging, especially 

with a scarcity of data on abnormal situations, leading to an imbalanced dataset. In such cases, transfer learning 

can be utilized. Transfer learning involves taking a model previously trained on a different problem with a 

different dataset, fixing some of its layers, and retraining it with data from a new domain [21]. This allows the 

model, initially trained for image classification, to be used for analyzing data in a different domain and 

detecting abnormal states, thereby helping to mitigate the issue of insufficient training data. 

 

(4) Grad-CAM 

One of the explainable artificial intelligence techniques, Class Activation Map (CAM) interprets neural 

networks by visually representing the location of pixels that influenced the result of a CNN [23]. This technique 

transforms the last convolutional layer of the CNN into a fully connected layer through global average pooling 

(GAP) and classifies images using the weights of each point in the fully connected layer as the weights of the 

activation layer. CAM provides visualization considering the location of pixels in the last convolutional layer 

of the CNN. To achieve this, the average value of each feature map is multiplied, and all the multiplied channels 

are summed up to create a heatmap. However, CAM has limitations as it can only be used in the last 

convolutional layer and may result in performance degradation due to the use of fully connected layers. Grad-

CAM is one of the models developed to overcome these drawbacks of CAM, creating heatmaps using 

backpropagation gradients instead of weights [24]. The weights and formula for Grad-CAM are as follows. 

With this approach, Grad-CAM more effectively interprets the results of CNNs. 

𝑎𝑘
𝑐 =

1

ℎ∗𝑤
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘

𝑤
𝑗=1

ℎ
𝑖=1                            (2) 

𝐺𝑟𝑎𝑑 − 𝐶𝐴𝑀𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝑎𝑘
𝑐𝐴𝑘𝑁

1=1 )                 (3) 
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Figure 2. Definition of misalignments 

 

(5) FG-CAM  

For frequency band interpretation using the Grad-CAM technique, the ReLU function of Grad-CAM is 

substituted with Welch’s method, a power spectrum transformation technique, to perform frequency analysis  . 

The weights �̂�𝑘
𝑐  of 𝐹𝑘 in FG-CAM are as follows [22]: 

�̂�𝑘
𝑐 =

1

𝑛
∑

𝜕𝑦𝑐

𝜕𝐹𝑖
𝑘

𝑛
𝑖=1 /∑ 𝐹𝑖

𝑘𝑛
𝑖=1                           (4) 

The calculated weights of the filters are used for frequency analysis by performing multiplication operations 

with each of the N filters in the output of the last 1D-CNN layer, and are then transformed into a power 

spectrum using Welch’s method. 

𝐹𝐺 − 𝐶𝐴𝑀𝑐 = 𝑃∑ �̂�𝑘
𝑐𝐹𝑘𝑁

𝑘=1
 (ƒ)                        (5) 

(6) FFT-CAM  

In FG-CAM, the calculated filter weights �̂�𝑘
𝑐  are used with the power spectrum obtained by applying the 

direct Fast Fourier Transform (FFT) technique instead of Welch’s method to the result multiplied by filter 𝐹𝑘. 

Generally, the resolution of frequencies improves with more points in the signal to which FFT is applied. 

Therefore, it is advantageous to use the entire signal without segmenting it. FFT-CAM is calculated by the 

following formula [18]: 

𝐹𝐹𝑇 − 𝐶𝐴𝑀𝑐 = 𝑃𝐹 (∑ �̂�𝑘
𝑐𝐹𝑘𝑁

𝑘=1 )                    (6) 

2.2 Dataset Composition 

The dataset is composed of vibration and torque signals collected using accelerometers and torque sensors, 

as shown in Figure 2, from a robot driven at varying speeds in scenarios with clearance anomalies in the LM 

rail and ball screw shaft. Each dataset is categorized as shown in Table 1. The data is classified into five groups 

based on the state: normal condition, significant clearance anomaly in the linear rail, minor clearance anomaly 

in the linear rail, significant clearance anomaly in the ball screw shaft, and minor clearance anomaly in the ball 

screw shaft. 

Table 1. Data class sets 

Data set name Meaning 

N Normal 

LR-H Large linear rail misalignment 

LR-M Minor linear rail misalignment 
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BS-H Large ball screw misalignment 

BS-M Minor ball screw misalignment 

 

3. Experiment and Results 

3.1 Experimental Setup Configuration 

The experimental setup, as shown in Figure 3, consists of a one-axis linear robot for wafer transportation 

equipped with an accelerometer and a torque sensor. The sampling frequency of the accelerometer is 48 kHz, 

and the torque sensor is 100 Hz.  

 

Figure 3. The LM rail sensor used in experiments 

Figure 4 shows the spectrograms and original signals from the accelerometer under normal conditions, with 

rail clearance anomalies, and with ball screw shaft clearance anomalies. Figure 5 illustrates the spectrograms 

and original signals of the torque sensor under the same conditions. 

 

(a)                               (b)                               (c) 

Figure 4. Acceleration signal spectrogram (above) and original signal (below)  

(a) Normal (b) LM Rail misalignment (c) Ball screw misalignment  
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(a)                               (b)                               (c)  

Figure 5. Torque signal spectrogram (above) and original signal (below)  

(a) Normal (b) LM Rail misalignment (c) Ball screw misalignment  

 

3.2 Training 

The number of data used for training and testing is as shown in Table 2. The total displacement of the LM 

guide is 750 mm, and data was collected while operating at speeds ranging from 250 mm/s to 700 mm/s, 

divided into 10 stages. For each dataset, 100 sets of acceleration and torque signals were collected during 

operation. For model training, the Adam optimizer was used, and the loss function was categorical cross-

entropy, with the number of repetitions (epochs) set to 150. In this case, the rail clearance anomalies were 

approximately 0.6 mm and 0.3 mm, and the ball screw clearance anomalies were 0.9 mm and 1.6 mm. For this 

experimental robot, the permissible rail clearance is 0.02 mm, and the ball screw clearance is 0.1 mm. 

 

Table 2. Data sets for experiments 

Data # Training data  # Test data Misalignment 

N 80 20 - 

LR-H 80 20 0.6 mm 

LR-M 80 20 0.3 mm 

BS-H 80 20 1.6 mm 

BS-M 80 20 0.9 mm 

 

The anomaly detection problem was divided into two types based on the number of classes to be 

distinguished, and each type was trained and tested separately. The loss function during the training process is 
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shown in Figure 6 for the accelerometer and as shown in Figure 7 for the torque sensor. 

① 2 Classes: Normal/Abnormal 

② 3 Classes: Normal/LM Rail Clearance Anomaly/Ball Screw Clearance Anomaly 

(a)                       (b)                             (c)                        (d)     

Figure 6. Loss function (acceleration data) 

  (a) 2 classes (1D-CNN) (b) 3 classes (1D-CNN)  (c) 2 classes (2D-CNN) (d) 3 classes (2D-CNN) 

 

(a)                       (b)                             (c)                        (d)     

Figure 7. Loss function (torque data) 

(a) 2 classes (1D-CNN) (b) 3 classes (1D-CNN)  (c) 2 classes (2D-CNN) (d) 3 classes (2D-CNN) 

 

3.3 Results 

3.3.1 Anomaly Detection Accuracy  

The test results of the implemented automatic diagnostic device are as shown in Table 3. When using the 

accelerometer, for the two-class problem of distinguishing normal from abnormal, accuracies of 100% and 97% 

were achieved depending on the model, while for the three-class problem of diagnosing the type of clearance 

anomaly, accuracies of 100% and 91% were observed. 

 

Table 3. Diagnosis accuracy 

Sensor Type Model Problem type Accuracy % 

Acceleration 

Sensor 

1D-CNN 2 Classes 100 

3 Classes 100 
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2D-CNN 2 Classes 97 

3 Classes 91 

Torque 

Sensor 

1D-CNN 2 Classes 100 

3 Classes 100 

 2D-CNN 2 Classes 99 

3 Classes 98 

 

In the case of using the torque sensor, for the two-class problem of distinguishing normal/abnormal, accuracies 

of 100% and 99% were achieved depending on the model, and for the three-class problem of diagnosing the 

type of clearance anomaly, accuracies of 100% and 98% were observed. In anomaly detection, using both 

vibration and torque sensors is deemed suitable for addressing clearance anomaly issues. 

3.3.2 Confusion Matrix 

Confusion matrices are used to evaluate the performance of classification models, visually representing the 

relationship between predicted and actual values [25]. The results of the final performance evaluation using 

test data are presented in confusion matrices. For the accelerometer, the confusion matrix graph is as shown in 

Figure 8, and for the torque sensor, the confusion matrix graph is as shown in Figure 9. 

 

(a)                                        (b) 

 

(c)                                       (d)          

Figure 8. Confusion matrix graph of acceleration data case  

(a) 2 classes (1D-CNN) (b) 3 classes (1D-CNN)  

(c) 2 classes (2D-CNN) (d) 3 classes (2D-CNN) 
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(a)                                        (b) 

         

(c)                                       (d)          

Figure 9. Confusion matrix graph of torque data case  

 (a) 2 classes (1D-CNN) (b) 3 classes (1D-CNN) 

 (c) 2 classes (2D-CNN) (d) 3 classes (2D-CNN) 

 

3.3.3 Interpretation of XAI Models 

(1) Applying Grad-CAM 

Grad-CAM was utilized to analyze and explain the results of the CNN model. The results of applying Grad-

CAM to the frequency images of operational state signals of linear feed robots for each sensor type are 

presented in Figure 10 and Figure 11. 
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Figure 10. STFT and Grad-CAM result (acceleration data) 

 

 

Figure 11. STFT and Grad-CAM result (torque data) 

 

This revealed that in the cases of normal operation, ball screw misalignment, and rail misalignment, the 

frequency areas with higher weights in the model are located in the low-frequency band, and it was challenging 

to distinguish between them. 
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(2) Applying FG-CAM 

For model interpretation, the power spectral density (PSD) graphs of the original signal’s frequency band 

were compared with the PSD graphs of the Class Activation Map (CAM) using FG-CAM to derive results. 

This allowed for an interpretation of which frequency areas of the original signal in the frequency domain the 

model focuses on and utilizes for classification. 

Figure 12 shows the average PSD graphs for the fault (ball screw side, rail side) and normal classes of the test 

data using an accelerometer. The blue box highlights areas where the frequency components of the original 

signal are lower compared to the class activation map. In the case of ball screw side faults, the primary 

frequency band referenced by the model in the original signal is approximately from 950Hz to less than 

2,500Hz. For rail side faults, the model references weights in the frequency band from around 1000Hz, which 

is not prominent in the original signal, for classifying the rail side class. Additionally, for normal data, it can 

be observed that the model references the frequency band from 300Hz and from 800Hz to less than 2,500Hz 

with increased weight for classifying the normal class. 

 

Figure 12. raw signal and FG-CAM result (acceleration data) 

Figure 13 represents the average PSD graphs for the fault (ball screw side, rail side) and normal classes of 

the test data using a torque sensor. The blue box emphasizes areas where the frequency components of the 

original signal are lower compared to the class activation map. To classify normal data as normal, the model 

references the frequency band from 10Hz to less than 50Hz with increased weight, which is not prominent in 

the original signal. Unlike the normal state, it is challenging to distinguish frequency bands for each fault state. 

However, it can be observed that the model references and weighs the amplitude sections of the frequency 
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band differently for each type of fault, indicating amplitude differences between the fault types. 

 

Figure 13. raw signal and FG-CAM result (torque data) 

The results of the model interpretation experiment reveal that for all classes, including normal and abnormal 

states, the frequency bands primarily referenced by the model differ from the signal components in the original 

signal. This outcome indicates that the model assigns weights to the relevant information through learning for 

classification. 

 

(3) Applying FFT-CAM 

For interpreting the model results, model interpretation using FFT-CAM was conducted. The interpretation 

involves visually comparing the power spectrum density (PSD) graphs of the raw signal's frequency band used 

as input and the PSD graphs of the CAM signal obtained through the FFT-CAM technique. To explain the 

operation of the model, the frequency components of the signal contained in the actual raw signal and the 

frequency components of the characteristic signal focused on by the model are compared. This approach allows 

for an interpretation of which frequency bands of the raw signal the model selects and utilizes for classification. 

Figure 14 represents the case using an accelerometer and provides the average PSD graphs for the fault (ball 

screw side, rail side) and normal classes of the test data. The blue box indicates that the frequency component 

of the original signal falls in the low-frequency band around 200Hz. In the case of ball screw side faults, the 

model identifies frequency peaks at 950Hz, 1150Hz, 1250Hz, 2150Hz, 2300Hz, and 2400Hz in the original 

signal as contributing to classification. For rail side faults, the model references and weighs the 1250Hz 

frequency band in the original signal. Additionally, it can be observed that for normal data, the model strongly 

considers the frequency band from 1000Hz to less than 2500Hz for classifying it as normal. 
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Figure 14. raw signal and FFT-CAM result (acceleration data) 

Figure 15 addresses the case using a torque sensor and provides the average PSD graphs for the fault (ball 

screw side, rail side) and normal classes of the test data. The blue box indicates that the PSD graph of the 

frequency band of the original signal falls within the low-frequency band. The red box represents the CAM 

signal, which is not prominent in the PSD graph of the frequency band of the original signal. While it’s 

challenging to distinguish which parts of the original signal’s frequency band are identified for each fault (ball 

screw side, rail side) and normal data, significant differences in amplitude are observed. This suggests that the 

model assigns considerable weight to the amplitude sections of the frequency band. 

Figure 15. raw signal and FFT-CAM result (torque data) 

The results of the model interpretation experiment reveal that for all classes, including normal and abnormal 
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states, the frequency bands primarily referenced by the model differ from the signal components in the original 

data. This outcome demonstrates that the model learns to assign weights to necessary information through 

learning for classification. 

 

4. Conclusion 

This study empirically verifies the role of AI features and chatbot system features in increasing the intention 

to use continuously in the context of chatbot services. Based on ECT, we have the direct and indirect effects 

of the three dimensions of AI-based features (i.e., personalization, personification, and social presence) and 

the two dimensions of the chatbot system (i.e., responsiveness and compatibility) on confirmation, satisfaction, 

and intentions to continuous use. 

In this paper, an XAI-based fault diagnosis method using vibration and torque signals is proposed to 

diagnose clearance anomalies in one-axis robots for semiconductor equipment. The experimental results 

demonstrated high accuracy in both two-class and three-class classification problems using various sensors. 

When using the accelerometer, accuracies of 100% and 97% were achieved for the two-class problem of 

distinguishing normal/abnormal, and 100% and 91% for the three-class problem of diagnosing the type of 

clearance anomaly. With the torque sensor, accuracies of 100% and 99% were achieved for the two-class 

problem of distinguishing normal/abnormal, and 100% and 98% for the three-class problem of diagnosing the 

type of clearance anomaly. The use of both vibration and torque sensors was found to be effective in detecting 

clearance anomalies and their types. 

Additionally, the reasons for the model’s anomaly diagnosis were interpreted through the visualization of 

the frequency band of Class Activation Maps (CAM) using Grad-CAM, FG-CAM, and FFT-CAM. The results 

of applying the Grad-CAM technique showed that the frequency areas with higher weights were located in the 

low-frequency band, making it challenging to distinguish each. However, with FG-CAM and FFT-CAM, it 

was possible to identify the frequency bands of the original signal that the model focuses on and to detect the 

abnormal states. 

As a result of this research, while interpreting the model with the Grad-CAM technique was challenging, 

the field of fault diagnosis requires further research and development. It is anticipated that future studies will 

improve the accuracy of fault diagnosis through better explainable artificial intelligence technologies and 

model enhancements. With such advancements, AI-based diagnostic methods can be expected to be applicable 

for anomaly detection in various industrial devices. 
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