International Journal of Control, Automation, and Systems
/
v.4
no.2
/
pp.204-216
/
2006
Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.
Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.
International Journal of Internet, Broadcasting and Communication
/
v.12
no.1
/
pp.67-72
/
2020
The fifth generation (5G) mobile communication has an impact on the human life over the whole world, nowadays, through the artificial intelligence (AI) and the internet of things (IoT). The low latency of the 5G new radio (NR) access is implemented by the state-of-the art technologies, such as non-orthogonal multiple access (NOMA). This paper investigates a practical issue that in NOMA, for the practical channel models, such as fading channel environments, the successive interference cancellation (SIC) should be performed on the stronger channel users with low power allocation. Only if the SIC is performed on the user with the stronger channel gain, NOMA performs better than orthogonal multiple access (OMA). Otherwise, NOMA performs worse than OMA. Such the superiority requirement can be easily implemented for the channel being static or slow varying, compared to the block interval time. However, most mobile channels experience fading. And symbol by symbol channel estimations and in turn each symbol time, selections of the SIC-performing user look infeasible in the practical environments. Then practically the block of symbols uses the single channel estimation, which is obtained by the training sequence at the head of the block. In this case, not all the symbol times the SIC is performed on the stronger channel user. Sometimes, we do perform the SIC on the weaker channel user; such cases, NOMA performs worse than OMA. Thus, we can say that by what percent NOMA is better than OMA. This paper calculates analytically the percentage by which NOMA performs better than OMA in the practical mobile communication systems. We show analytically that the percentage for NOMA being better than OMA is only the function of the ratio of the stronger channel gain variance to weaker. In result, not always, but almost time, NOMA could perform better than OMA.
In this paper, an improved ACDE (Adaptive Cauchy Differential Evolution) algorithm with faster convergence speed, called ACDE2, is suggested. The baseline ACDE algorithm uses a "DE/rand/1" mutation strategy to provide good population diversity, and it is appropriate for solving multimodal optimization problems. However, the convergence speed of the mutation strategy is slow, and it is therefore not suitable for solving unimodal optimization problems. The ACDE2 algorithm uses a "DE/current-to-best/1" mutation strategy in order to provide a fast convergence speed, where a control parameter initialization operator is used to avoid converging to local optimization. The operator is executed after every predefined number of generations or when every individual fails to evolve, which assigns a value with a high level of exploration property to the control parameter of each individual, providing additional population diversity. Our experimental results show that the ACDE2 algorithm performs better than some state-of-the-art DE algorithms, particularly in unimodal optimization problems.
The Journal of Korean Association of Computer Education
/
v.23
no.2
/
pp.1-11
/
2020
As software and artificial intelligence education became more and more important, in December 2019, the Ministry of Science and ICT announced plans to expand software and AI education to mandatory education in elementary and secondary schools by 2022. In addition to elementary and secondary schools, most universities are actively engaged in software education for computer non-majors, but research on coding education for computer non-majors is insufficient. The purpose of this paper is to find an efficient teaching and learning method for coding education for computer non-majors. Nowadays, college students, called Millennial and Generation Z, prefer visual information and are familiar with computers as digital natives. Based on these characteristics, this study examined the visual literacy and thinking styles of college students and then examined whether the students' visual literacy and thinking styles influenced coding-based problem solving in coding subjects. Based on this, this paper proposes an alternative to do programming education more efficiently for students who are new to coding.
Recently released AI speakers show a pattern of interacting with the user by mainly with voice and simultaneously displaying simple and formal visual feedback through status LED light. This is due to the limitations of the product characteristics of the speaker, which makes it difficult to interact variously, and even such visual feedback is not standardized for each product, and thus does not give a consistent user experience. By maximizing the visual elements that can be expressed through color and abstract movement to assist voice feedback, the product can provide the user with an extended experience that includes not only functional satisfaction but also emotional satisfaction. In this study, after analyzing the interaction methods of the existing AI speakers, we examined the theory of color communication in order to expand the visual feedback effect, and examined the meaning and expression technique of Color Field Painting, an art genre that maximizes the emotional experience by using only color. Through this, the AI speaker's visual communication function was expanded by designing a way to feedback communication status using LED light.
Journal of Information Technology Applications and Management
/
v.26
no.3
/
pp.121-134
/
2019
The Fourth Industrial Revolution has differentiated technologies such as artificial intelligence, IoT(Internet of things), big data, and mobile. As the civilization develops more and more, humanity enjoy the cultural activities more than economic activity for the food and shelter. The platform structure based on the advanced information technology of the present will expand the cultural contents area in a variety of ways. Cultural contents respond sensitively to changes in consumer and will be useful experiences of human activities. Therefore, it should be noted again that the contents industry should not be limited to the discussion of the application of the fourth technology, but should be produced with emphasis on useful experiences of human being. In other words, the discussion of human activities around cultural contents should be focused on how to apply beyond the use of fourth industrial technology. Therefore, it is necessary to analyze the basis of the successful storytelling of the planning stage to connect the fourth industrial technology and human useful experience as a method for developing cultural contents, and to build and propose a model as a strategic method. This study analyzes domestic and foreign cases made by using big data among the visual contents which show continuous increase of consumption among culture industry field, and draws success factors and limit points. Next, we extract what is the successful matching factor that influenced consumer 's consciousness, and find out that the structure of culture prototype has been applied in the long history of mankind, and presents it as a storytelling model. Through the above research, this study aims to present a new interpretation and creative activity of cultural contents by presenting a storytelling model as a methodology for connecting creative knowledge, away from the general interpretation of social phenomenon applied with big data.
The effort identifying positioning information of the moving object in real time has been a issue not only in sport biomechanics but also other academic areas. In order to solve this issue, this study tried to track the movement of a pitched ball that might provide an easier prediction because of a clear focus and simple movement of the object. Machine learning has been leading the research of extracting information from continuous images such as object tracking. Though the rule-based methods in artificial intelligence prevailed for decades, it has evolved into the methods of statistical approach that finds the maximum a posterior location in the image. The development of machine learning, accompanied by the development of recording technology and computational power of computer, made it possible to extract the trajectory of pitched baseball from recorded images. We present a method of baseball tracking, based on object tracking methods in machine learning. We introduce three state-of-the-art researches regarding the object tracking and show how we can combine these researches to yield a novel engine that finds trajectory from continuous pitching images. The first research is about mean shift method which finds the mode of a supposed continuous distribution from a set of data. The second research is about the research that explains how we can find the mode and object region effectively when we are given the previous image's location of object and the region. The third is about the research of representing data into features that we can deal with. From those features, we can establish a distribution to generate a set of data for mean shift. In this paper, we combine three works to track baseball's location in the continuous image frames. From the information of locations from two sets of images, we can reconstruct the real 3-D trajectory of pitched ball. We show how this works in real pitching images.
In order to cultivate the talents acquired in the fourth industrial revolution, developed countries' government are actively engaged in the campaigns encouraging K-12 students to participate in the maker movement. Maker education is regarded as one possible solution based on high tech in the era of the 4th Industrial Revolution, and it is spreading widely along with STEM education. In South Korea, STEAM education was actively conducted nationwide, and since 2017, STEAM and maker education have been linked showing mutual development. However, compared to STEAM education linked to the curriculum, comparison and activity-based research on maker education for teenagers is still insufficient. Therefore, this study aimed to suggest implications for STEAM education and maker education by analyzing the motivation of Korean youth to participate in maker activities. The subjects of this study are high school students who participated in maker education programs in student community for the first time in Korea. In this study, students were classified into engineering-related career group and non-engineering-related career groups based on their career intentions, and the motivation and understanding of participation in maker activities were compared. As a result of the study, male students participated more in maker education community activities than female students, and the engineering-related career group had a higher intention to participate in games, outdoor activities, IT equipment, digital production, and electrical/electronic production activities than the non-engineering-related career group. In addition, in the fields of handicraft/art, home baking, installing, and horticultural agriculture, there was no difference in the intention of participate in the engineering-related career group and the non-engineering-related career group. It was found that the engineering-related career group believed that there was a strong relationship between the maker education community activity, career exploration and future career choice, while the non-engineering-related career group believed that the relationship is less strong. It was also found that the engineering-related career group was participating more actively in the maker activity than the other group.
Journal of Physiology & Pathology in Korean Medicine
/
v.35
no.1
/
pp.22-27
/
2021
This study conducted a questionnaire for students of Pusan National University Graduate School of Korean Medicine who practiced using the Oriental Medicine Diagnosis System (ODS). From the questionnaire, this study investigated current state of application and perception of AI in Korean Medicine and explored the direction of ODS improvement and utilization. The survey questions consisted of six questions examining the satisfaction of the diagnostic expert system, five questions evaluating the availability of the diagnostic expert system, and six questions to predict the impact of AI on the Korean medicine community. The survey analysis showed high satisfaction with practice using ODS. On the other hand, the possibility of using ODS, especially in clinical use, was evaluated as relatively low compared to the satisfaction of the practice. Therefore, the overall impact of AI on the Korean medical community is not expected to be large. Although there are difficulties in standardization of clinical data due to the academic characteristics of Korean medicine, it is necessary to continue attempts to apply AI. By actively introducing educational tools using the latest AI techniques to the diagnosis experience and doctor-patient role in a practice, students will be able to increase their satisfaction with their practice and respond appropriately to the state-of-the-art medical environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.