• Title/Summary/Keyword: Artificial Distribution

Search Result 1,043, Processing Time 0.028 seconds

Characterization of Legionella Isolated from the Water System at Public Facilities in Chungcheongnam-do Province (충남지역 다중이용시설의 환경수계에서 분리한 레지오넬라균의 특성 분석)

  • Cheon, Younghee;Lee, Hyunah;Nam, Hae-Sung;Choi, Jihye;Lee, Dayeon;Ko, Young-Eun;Park, Jongjin;Lee, Miyoung;Park, Junhyuk
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.472-478
    • /
    • 2021
  • Background: The Legionella case detection and notification rate have increased in public artificial water environments where people visit, including large buildings, public baths, and hospitals. Objectives: In this study, the distribution of Legionella and its epidemiologic characteristics were analyzed in the water systems of public facilities in Chungcheongnam-do Province in South Korea. Methods: Culture and PCR analysis were performed on 2,991 environmental water system samples collected from 2017 to 2019, and associations with year, facilities, seasons, and temperature of water system were statistically analyzed by using R-Studio for Windows. Descriptive data was compared using chi-square tests and independent t-tests. Results: The detection rate of Legionella increased from 3.1% in 2017 to 10.3% in 2019, appearing most frequently in the order of public baths, large-scale buildings, hospitals, and apartments. It was detected mainly in summer from June to August, over 1.0×103 CFU/L on average in 133 cases (66.5%). Lots of germs were detected in bathtub water, cooling tower water, and warm water (p<0.001), and it was detected at higher rates in the cities where multipurpose facilities were concentrated than in rural areas (p=0.018). Conclusions: This study suggests that continuous monitoring and control are required for Legionella in the water system environment of high risk facilities. Moreover, these results will be helpful to prepare efficient management plans to prevent the Legionellosis that occurs in Chungcheongnam-do Province.

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

Design of an Integrated University Information Service Model Based on Block Chain (블록체인 기반의 대학 통합 정보서비스 실증 모델 설계)

  • Moon, Sang Guk;Kim, Min Sun;Kim, Hyun Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • Block-chain enjoys technical advantages such as "robust security," owing to the structural characteristic that forgery is impossible, decentralization through sharing the ledger between participants, and the hyper-connectivity connecting Internet of Things, robots, and Artificial Intelligence. As a result, public organizations have highly positive attitudes toward the adoption of technology using block-chain, and the design of university information services is no exception. Universities are also considering the application of block-chain technology to foundations that implement various information services within a university. Through case studies of block-chain applications across various industries, this study designs an empirical model of an integrated information service platform that integrates information systems in a university. A basic road map of university information services is constructed based on block-chain technology, from planning to the actual service design stage. Furthermore, an actual empirical model of an integrated information service in a university is designed based on block-chain by applying this framework.

Preliminary Research of the Sedimentary Environment in Bupyeng Reservoir Region, Soyang Lake in Chuncheon - Focus on Sentinel-2 Satellite Images and in-situ data - (춘천시 소양호 상류 부평지구의 퇴적환경에 대한 선행연구 - 현장조사와 위성영상자료를 중심으로 -)

  • Kim, GeonYoung;Kim, Dain;Kim, TaeHun;Lee, JinHo;Jang, YoSep;Choi, HyunJin;Shim, WonJae;Park, SungJae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1119-1130
    • /
    • 2018
  • Soyang Lake has been contributing to economic growth by preventing flood damage in the metropolitan area, the water level in the middle to upper flow of lake has been greatly decreased due to the drought in 2015. In order to restore the existing flow rate, Bupyungbo has been built in Bupyeong-ri, Shin Nam-myeon, Inje-gun to cause artificial changes on the sedimentary environment of Bupyeong freshwater region. Therefore, this study intends to confirm the changes of sedimentary environment since Bupyeongbo has been utilized. For this study, we used the Sentinel-2 satellite image data periodically to measure the dimension of water according to the volume of water kept near Bupyung district and analyzed the particle size and the percentage of water content of the sediments through field study. The Sentnel-2 satellite images showed us how the water surface has been changed and that during the period from September 2017 to October 2018, the minimum and maximum area of water surface was observed in June 2018 and in January 2018, respectively. In addition, we find that the smaller being the particle size, the higher having the water content and that there is higher the correlation between the water content and the grain size of the sediment layer. Hereafter, if we will acquire the drone images at Bupyung district, we expect that we will be able to measure the distribution of sediments in the same area according to different time periods and observe various kinds of sediment through field work.

Outlier Detection By Clustering-Based Ensemble Model Construction (클러스터링 기반 앙상블 모델 구성을 이용한 이상치 탐지)

  • Park, Cheong Hee;Kim, Taegong;Kim, Jiil;Choi, Semok;Lee, Gyeong-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.435-442
    • /
    • 2018
  • Outlier detection means to detect data samples that deviate significantly from the distribution of normal data. Most outlier detection methods calculate an outlier score that indicates the extent to which a data sample is out of normal state and determine it to be an outlier when its outlier score is above a given threshold. However, since the range of an outlier score is different for each data and the outliers exist at a smaller ratio than the normal data, it is very difficult to determine the threshold value for an outlier score. Further, in an actual situation, it is not easy to acquire data including a sufficient amount of outliers available for learning. In this paper, we propose a clustering-based outlier detection method by constructing a model representing a normal data region using only normal data and performing binary classification of outliers and normal data for new data samples. Then, by dividing the given normal data into chunks, and constructing a clustering model for each chunk, we expand it to the ensemble method combining the decision by the models and apply it to the streaming data with dynamic changes. Experimental results using real data and artificial data show high performance of the proposed method.

A Study on the Data Cleaning and Standardization of National Ecosystem Survey in Korea (전국자연환경조사 데이터 정제와 표준화 방안 연구)

  • Kwon, Yong-Su;Song, Kyohong;Kim, Mokyoung;Kim, Kidong
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.380-389
    • /
    • 2020
  • Research on diagnosing and predicting the response of ecosystems caused by environmental changes such as artificial disturbance and climate change is emerging as the most important issue of biodiversity and ecosystem researches. This study aims to clean, standardize, and provide the results of National Ecosystem Survey which should be considered fundamentally in diagnosing and predicting ecosystem changes in the form of dataset. To refine and clean the dataset we developed a simple verification program based on the fifth National Ecosystem Survey Guideline and applied that program to the data from the second (1997~2005), third (2006~2013) and fourth (2014~2018) National Ecosystem Survey. Data quality control processes were implemented including (1) standardization of terminology, (2) similar data table integration, (3) unnecessary attribute and error elimination, (4) unification of different input items, (5) data arrangement in codes, and (6) code mapping for input items. These approaches and methods are the first attempt propose an option for ecological data standardization in Korea. The standardized dataset of National Ecosystem Survey in Korea will be easily accessible, reusable for both researchers and public. In addition, we expect it will contribute to the establishment of diverse environmental policies concerning environmental assessments, habitat conservation, prediction of endangered species distribution and ecological risks due to climate change. The dataset through this study is open freely online via EcoBank (nie-ecobank.kr) which is the first ecological information portal system in Korea developed by National Institute of Ecology.

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

A Study on the System for AI Service Production (인공지능 서비스 운영을 위한 시스템 측면에서의 연구)

  • Hong, Yong-Geun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.323-332
    • /
    • 2022
  • As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.

AI Art Creation Case Study for AI Film & Video Content (AI 영화영상콘텐츠를 위한 AI 예술창작 사례연구)

  • Jeon, Byoungwon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.85-95
    • /
    • 2021
  • Currently, we stand between computers as creative tools and computers as creators. A new genre of movies, which can be called a post-cinema situation, is emerging. This paper aims to diagnose the possibility of the emergence of AI cinema. To confirm the possibility of AI cinema, it was examined through a case study whether the creation of a story, narrative, image, and sound, which are necessary conditions for film creation, is possible by artificial intelligence. First, we checked the visual creation of AI painting algorithms Obvious, GAN, and CAN. Second, AI music has already entered the distribution stage in the market in cooperation with humans. Third, AI can already complete drama scripts, and automatic scenario creation programs using big data are also gaining popularity. That said, we confirmed that the filmmaking requirements could be met with AI algorithms. From the perspective of Manovich's 'AI Genre Convention', web documentaries and desktop documentaries, typical trends post-cinema, can be said to be representative genres that can be expected as AI cinemas. The conditions for AI, web documentaries and desktop documentaries to exist are the same. This article suggests a new path for the media of the 4th Industrial Revolution era through research on AI as a creator of post-cinema.