• Title/Summary/Keyword: Arsenic sulfide

Search Result 25, Processing Time 0.032 seconds

A Study on the Removal of Arsenic 1mm Closed-Mine Tailings by Acid-Leaching Process (산침출에 의한 광미중 비소성분의 제거에 관한 연구)

  • 오종기;이화영;김성규;이재령;박재구
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.21-31
    • /
    • 1998
  • A study on the acid leaching and precipitation has been conducted to remove arsenic from the closed-mine tailings. HCI and H$_2$SO$_4$were used as the leach liquor of arsenic and the tailing obtained from the Da-Duck Mine, which was already closed several decades ago, was also used as the source of arsenic. The effect of the concentration of acid, leaching time and the slurry density on the leaching efficiency of arsenic has been examined. In addition, pH controls and the addition of sodium sulfide were also attempted to remove the arsenic compound as the precipitation from the leachate. After 1 hr leaching by HCI, 40 to 86% of arsenic was leached out depending on the concentration of acid or the slurry density while 47 to 77% of it was leached out by $H_2$$SO_4$. The leaching of arsenic by both acids was almost accomplished within 10 min. and after that only a slight increase in leaching efficiency was observed with leaching time. When the leach liquor was used repeatedly for the leaching of arsenic, the concentration of arsenic in the leach liquor was found to increase continuously although the leaching efficiency was diminished. As far as the precipitation of arsenic in the leachate was concerned, more than 99% of arsenic could be precipitated through the addition of sodium sulfide as the precipitator while the pH controls resulted in the precipitation of up to 84%.

  • PDF

The Importance of Reaction Mechanisms in Interpreting the Arsenic Reactive Transport of FeS-coated Sand Column

  • Han, Young-Soo;Demond, Avery H.;Hayes, Kim F.
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • FeS, as a natural reduced iron mineral, has been recognized to be a viable reactive material for As(III) sequestration in natural and engineered systems. In this study, FeS-coated sand packed columns were tested to evaluate the As(III) removal capacities under anaerobic conditions at pH 5, 7 and 9. The column obtained As(III) removal capacity was then compared with the capacity result obtained from batch reactors. In the comparison, two different approaches were used. The first approach was used the total As(III) removal capacity which method was proved to be useful for interpreting pH 5 system. The second approach was used to consider sorption non-linearity and proved to be useful for interpreting the pH 9. The results demonstrated that a mechanistic understanding of the different removal processes at different pH conditions is important to interpret the column experimental results. At pH 5, where the precipitation of arsenic sulfide plays the major role in the removal of arsenic, the column shows a greater removal efficiency than the batch system due to the continuous dissolution of sulfide and precipitation of arsenic sulfide. At pH 9, where adsorption mainly governs the arsenic removal, the sorption nonlinearity should be considered in the estimation of the column capacity. This study highlighted the importance of understanding reaction mechanism to predict column performance using batch-obtained experimental results.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Mechanistic Study of FeS Reacted with Arsenate under Various pH Conditions (FeS 수용액 내 pH에 따른 5가비소의 반응 메커니즘 연구)

  • Han, Young-Soo;Lee, Mu Yeol;Seong, Hye Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2022
  • Mackinawite (FeS), as a ubiquitous reduced iron mineral, is known as a key controller of redox reactions in anaerobic subsurface environment. The reaction of FeS with redox-sensitive toxic element such as arsenic is substantially affected by pH conditions of the given environments. In this study, the interaction of As(V) with FeS was studied under strict anaerobic conditions with various pH conditions. The pH-dependent arsenic removal tests were conducted under wide ranges of pH conditions and X-ray absorption spectroscopy (XAS) was applied to investigate the reaction mechanisms under pH 5, 7, and 9. The removal efficiency of FeS for As(V) showed the higher removal of As(V) under low pH conditions and its removal efficiency decreased with increasing pH, and no As(V) reduction was observed in 1 g/L FeS solution. However, XAS analysis indicated the reduction of As(V) to As(III) occurred during reaction between FeS and As(V). The reduced form of As(III) was particularly identified as an arsenic sulfide mineral (As2S3) in all pH conditions (pH 5, 7, and 9). As2S3 precipitation was more pronounced in pH 5 where the solubility of FeS is higher than in other pH conditions. The linear combination fitting results of XAS demonstrated that As(V) removal mechanism is concerted processes of As2S3 precipitation and surface complexation of both arsenic species.

The Characteristics of Lacquer Coating of Mother-of-Pearl Turtle Shell Lacquerware (나전대모칠기에 나타나는 칠도막의 특성)

  • Lee, Seon Joo;Okada, Fumio
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.109-121
    • /
    • 2016
  • Mother-of-pearl turtle shell lacquerware refers to a decoration made of a mother-of-pearl, a turtle shell and metal wires. This lacquerware features bright color tone as it is produced by sprinkling metal powder over its entire surface. This study aimed to find out its material properties and characteristics by using an optical microscopy and conducting a SEM-EDS analysis on the cross section of lacquer coating. As a result, it was found that charcoal powder and soil powder were mixed for undercoating. Then a mixture of cinnabar lacquer and monoclinic arsenic sulfide mineral ($As_2S_3$) was coated on the undercoating and brass powder was sprinkled on top of it. Especially, a little amount of pigment was found on the lacquer layer, which is distinguished from the colors used for conventional lacquer patterns. In addition, it was also found that the cinnabar lacquer and monoclinic arsenic sulfide mineral were mixed together.

Arsenic environmental contamination, chemical speciation and its behaviour in the water system from some abandoned Au-Ag mines, Korea

  • Yi Ji-Min;Chon Hyo-Taek;Lee Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.522-525
    • /
    • 2003
  • Mine waters, surface waters and groundwaters were sampled around seven Au-Ag mine areas (Dongil, Okdong, Dongjung, Songcheon, Ssangjeon, Dogok and Gubong Au-Ag mines). The main contamination sources of As in these abandoned Au-Ag mines can be suggested as mine tailings and waste rocks including the sulfide gangue minerals (arsenopyrite). The relatively high concentration of As in mine waters was shown in the Dongil (524 ${\mu}g/L$) and the Dogok (56 ${\mu}g/L$) mine areas. Arsenic concentrations in stream waters from the Dongil ($0.9\~118{\mu}g/L$), the Songchon ($0.8\~63{\mu}g/L$), the Ssangjeon ($1.6\~109{\mu}g/L$) and the Gubong ($3.6\~63{\mu}g/L$) mine areas exceeded the permissible level for stream water in Korea. Groundwaters collected from the Dongil ($0.9\~64{\mu}g/L$ ), the Okdong ($0.2\~69{\mu}g/L$) and the Gubong ($0.5\~101{\mu}g/L$) mine areas contained high As concentration to cause the arsenicosis in these areas. In As speciation, the concentration ratios of As(III) to As(total) present up to $75\%$ and $100\%$ in stream waters from the Okdong and the Songcheon mines, and $70\%$ in groundwaters from the Okdong and the Dongjung mines. Arsenic concentration decreases downstream from the tailing dump correlatively with pH and Fe concentration. Highly elevated As concentrations are found in the dry season (such as April and March) than in the wet season (September) due to the dilution effect by heavy rain during summer in stream waters from the Dongil and the Songcheon mine areas.

  • PDF

The effects of organic materials on microbial mediation of arsenic. in contaminated sediment

  • Lee Jong-Un;Lee Sang-Woo;Kim Kyoung-Woong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.532-535
    • /
    • 2003
  • Indigenous bacterial mediation of As in contaminated sediment after biostimulation with a variety of carbon sources was investigated under aerobic and anaerobic conditions. Under the aerobic condition with lactate supply, indigenous bacteria increased the amount of total As extracted from the sediment and most dissolved As existed as As(V). Under the anaerobic, glucose-supplied condition, dissolved As diminished with time likely due to production of As sulfide(s) and subsequent precipitation, which resulted from bacterial reduction of ${SO_4}^{2-}$. The results implied that bacterial natural attenuation of As in subsurface has a potential to be practically applied.

  • PDF

퇴적물 내 비소의 지구미생물학적 거동 연구

  • Lee Jong-Un;Lee Sang-U;Park Ji-Min;Kim Gyeong-Ung;Jeon Hyo-Taek;Jeong Myeong-Chae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.111-114
    • /
    • 2006
  • The effects of indigenous bacteria on geochemical behavior of As in As-contaminated sediments (Hwachon mine and Myoungbong mine) after biostimulation with a variety of carbon sources were investigated under anaerobic condition. In Hwachon sediment, As was dramatically extracted from nonsterile sediment with time, reaching the highest concentration of $500{\mu}g/L$. The As leaching was likely caused by microbial dissolution of Fe oxides/oxyhydroxides with which As had been coprecipitated. However, in the case of Myoungbong sediment supplied with glucose, dissolved As decreased with time likely due to production of As sulfide(s) and subsequent precipitation, which resulted from bacterial reduction of $SO_4^{2-}$. The results implied that bacterial in-situ stabilization of As In subsurface has a potential to be practically applied.

  • PDF

Leaching Behavior of Heavy Metals from an Ore Containing High Concentration as Utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans (Acidithiobacillus ferrooxidans와 Acidithiobacillus thiooxidans를 활용한 고농도 비소 함유 광석 내 중금속 용출 거동 연구)

  • Kim, Gahee;Kim, Rina;Kim, Kwanho;You, Kwang-suk
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.14-23
    • /
    • 2021
  • To investigate the potential for leaching of heavy metals by bacteria from ores stacked on actual mining sites, leaching tests of a complex metallic ore (Pb-Zn-As ore) were conducted over 60 days using acidophile bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans under initial acidic conditions. Initially, a small amount of heavy metals was leached due to the initial acidic conditions. After 20 days, when A. thiooxidans in the reactor was adapted to the ore, the amount of leached heavy metals rapidly increased; the concentrations of leached arsenic, iron, and zinc reached a maximum of 2800, 3700, and 2500 mg/L, respectively. On the other hand, in the presence of A. ferrooxidans or in the control test without bacteria, heavy metals, except zinc, were barely detected in leaching. Through this study, it was confirmed that (i) bacteria could leach heavy metals at mining sites under acidic conditions and (ii) leaching of heavy metals from a high arsenic-containing ore by A. thiooxidans was more significant than that by A. ferrooxidans.