DOI QR코드

DOI QR Code

Leaching Behavior of Heavy Metals from an Ore Containing High Concentration as Utilizing Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans

Acidithiobacillus ferrooxidans와 Acidithiobacillus thiooxidans를 활용한 고농도 비소 함유 광석 내 중금속 용출 거동 연구

  • Kim, Gahee (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Rina (Resource Recovery Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Kwanho (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • You, Kwang-suk (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 김가희 (한국지질자원연구원 DMR 융합연구단) ;
  • 김리나 (한국지질자원연구원 자원회수연구센터) ;
  • 김관호 (한국지질자원연구원 DMR 융합연구단) ;
  • 유광석 (한국지질자원연구원 DMR 융합연구단)
  • Received : 2020.12.10
  • Accepted : 2021.02.17
  • Published : 2021.04.30

Abstract

To investigate the potential for leaching of heavy metals by bacteria from ores stacked on actual mining sites, leaching tests of a complex metallic ore (Pb-Zn-As ore) were conducted over 60 days using acidophile bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans under initial acidic conditions. Initially, a small amount of heavy metals was leached due to the initial acidic conditions. After 20 days, when A. thiooxidans in the reactor was adapted to the ore, the amount of leached heavy metals rapidly increased; the concentrations of leached arsenic, iron, and zinc reached a maximum of 2800, 3700, and 2500 mg/L, respectively. On the other hand, in the presence of A. ferrooxidans or in the control test without bacteria, heavy metals, except zinc, were barely detected in leaching. Through this study, it was confirmed that (i) bacteria could leach heavy metals at mining sites under acidic conditions and (ii) leaching of heavy metals from a high arsenic-containing ore by A. thiooxidans was more significant than that by A. ferrooxidans.

실제 광산 현장에서 적재된 광석으로부터 미생물에 의한 중금속 용출 가능성을 알아보고자 호산성 미생물인 Acidithiobacillus ferrooxidans와 Acidithiobacillus thiooxidans를 이용하여 초기 산성조건에서 복합금속광(Pb-Zn-As 광석)을 대상으로 60일에 걸쳐 중금속 용출실험을 진행하였다. 용출 시험 초기에는 초기 산성 조건에 의해 용출되는 소량의 중금속 이외에 미생물의 활성화로 인한 중금속의 용출은 거의 검출되지 않았다. 그러나 A. thiooxidans이 시료의 환경에 적응한 20일 이후, 중금속 용출량이 급격히 증가하였으며, 독성 물질로 위험성이 높은 비소와 철, 아연이 각각 최대 2800 mg/L, 3700 mg/L, 그리고 2050 mg/L로 용출되는 것을 확인하였다. 반면 A. ferrooxidans을 주입한 반응기와 미생물을 주입하지 않은 대조실험 결과에서는 약간의 아연을 제외한 기타 중금속 용출이 전혀 발생하지 않았다. 이를 통해 산성조건의 광산 현장에서 토착 미생물에 의한 황화광 산화 및 중금속의 용출 가능성을 확인할 수 있었고, 본 연구에 사용된 고농도 비소를 함유한 광석 시스템에서는 A. ferrooxidans 보다 A. thiooxidans에 의한 중금속 용출이 더욱 위협적이라는 것을 확인하였다.

Keywords

References

  1. Korea Resources Corporation (KORES), 2008 : https://www.kmrgis.net/kmrgis/MRPresentCondition/MRPC0101_popup.aspx?category=undefined.
  2. Korea Resources Corporation (KORES), 2019 : https://www.kmrgis.net/kmrgis/MRPresentCondition/MRPC0101.aspx?menuID=MRP.C01.
  3. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2019 : https://www.kigam.re.kr/menu.es?mid=a30102010510.
  4. Korea Resources Corporation (KORES), 2020 : https://www.kores.or.kr/views/cms/hkor/bi/bi01/bi0104.jsp.
  5. Kesler, S. E., Simon, A. C., Simon, A. F., 2015 : Mineral resources, economics and the environment, Cambridge University Press.
  6. Gahan, C. S., Srichandan, H., Kim, D.-J., et al., 2012 : Biohydrometallurgy and biomineral processing technology: a review on its past, present and future, Research Journal of Recent Sciences, 1(10), pp.85-99.
  7. Mahmoud, A., Cezac, P., Hoadley, A. F. A., et al., 2017 : A review of sulfide minerals microbially assisted leaching in stirred tank reactors, International Biodeterioration & Biodegradation, 119, pp.118-146. https://doi.org/10.1016/j.ibiod.2016.09.015
  8. Kim, G., Park, K., Choi, J., et al., 2015 : Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow, International Journal of Mineral Processing, 143, pp.98-104. https://doi.org/10.1016/j.minpro.2015.09.012
  9. Kim, G., Choi, J., Silva, R. A., et al., 2017 : Feasibility of bench-scale selective bioflotation of copper oxide minerals using Rhodococcus opacus, Hydrometallurgy, 168, pp.94-102. https://doi.org/10.1016/j.hydromet.2016.06.029
  10. Yin, S., Wang, L., Wu, A., et al., 2018 : Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, Journal of Cleaner Production, 189, pp.746-753. https://doi.org/10.1016/j.jclepro.2018.04.116
  11. Wang, X., Ma, L., Wu, J., et al., 2020 : Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments, Bioresource Technology, 308, pp.123273. https://doi.org/10.1016/j.biortech.2020.123273
  12. Panda, S., Sanjay, K., Sukla, L. B., et al., 2012 : Insights into heap bioleaching of low grade chalcopyrite ores - A pilot scale study, Hydrometallurgy, 125-126, pp.157-165. https://doi.org/10.1016/j.hydromet.2012.06.006
  13. Scheinberg, I. H., Sternlieb, I., 1996 : Wilson disease and idiopathic copper toxicosis, The American Journal of Clinical Nutrition, 63(5), pp.842S-845S. https://doi.org/10.1093/ajcn/63.5.842
  14. Vassallo, D. V., Simoes, M. R., Furieri, L. B., et al., 2011 : Toxic effects of mercury, lead and gadolinium on vascular reactivity, Brazilian Journal of Medical and Biological Research, 44, pp.939-946. https://doi.org/10.1590/S0100-879X2011007500098
  15. Plum, L. M., Rink, L., Haase, H., 2010 : The essential toxin: impact of zinc on human health, International Journal of Environmental Research and Public Health, 7(4), pp.1342-1365. https://doi.org/10.3390/ijerph7041342
  16. Saha, J. C., Dikshit, A. K., Bandyopadhyay, M., et al., 1999 : A review of arsenic poisoning and its effects on human health, Critical Reviews in Environmental Science and Technology, 29(3), pp.281-313. https://doi.org/10.1080/10643389991259227
  17. Bryner, L. C., Jameson, A. K., 1958 : Microorganisms in leaching sulfide minerals, Appl Microbiol, 6(4), pp.281-287. https://doi.org/10.1128/am.6.4.281-287.1958
  18. Lundgren, D. G., Silver, M., 1980 : Ore leaching by bacteria, Annual Review of Microbiology, 34(1), pp.263-283. https://doi.org/10.1146/annurev.mi.34.100180.001403
  19. Schippers, A., Sand, W., 1999 : Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur, Applied and Environmental Microbiology, 65(1), pp.319-321. https://doi.org/10.1128/aem.65.1.319-321.1999
  20. Ehrlich, H., 2004 : Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy: A brief history, European Journal of Mineral Processing & Environmental Protection, 4(2), pp.102-112.
  21. Zeng, L., Huang, J., Zhang, Y., et al., 2008 : An effective method of DNA extraction for bioleaching bacteria from acid mine drainage, Applied Microbiology and Biotechnology, 79(5), pp.881. https://doi.org/10.1007/s00253-008-1491-5
  22. Mishra, D., Kim, D., Ahn, J., et al., 2005 : Bioleaching: A microbial process of metal recovery; A review, Metals and Materials International, 11(3), pp.249-256. https://doi.org/10.1007/BF03027450
  23. Nguyen, V. K., Lee, M., Park, H., et al., 2015 : Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp., Journal of Industrial and Engineering Chemistry, 21, pp.451-458. https://doi.org/10.1016/j.jiec.2014.03.004
  24. Baker, B. J., Banfield, J. F., 2003 : Microbial communities in acid mine drainage, FEMS Microbiology Ecology, 44(2), pp.139-152. https://doi.org/10.1016/S0168-6496(03)00028-X
  25. Bosecker, K., 1997 : Bioleaching: Metal solubilization by microorganisms, FEMS Microbiology Reviews, 20(3-4), pp.591-604. https://doi.org/10.1016/S0168-6445(97)00036-3
  26. Seifelnassr, A. A. S., Abouzeid, A. M., 2013 : Exploitation of bacterial activities in mineral industry and environmental preservation: An overview, Journal of Mining, 2013, pp.507168.
  27. Collinet, M. N., Morin, D., 1990 : Characterization of arsenopyrite oxidizing Thiobacillus, Tolerance to arsenite, arsenate, ferrous and ferric iron, Antonie van Leeuwenhoek, 57(4), pp.237-244. https://doi.org/10.1007/BF00400155
  28. Komnitsas, C., Pooley, F. D., 1990 : Bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece, Minerals Engineering, 3(3), pp.295-306. https://doi.org/10.1016/0892-6875(90)90125-U