In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction

미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전

  • Jang, Hae-Young (GS Caltex Corporation, GS Gangnam Tower) ;
  • Chon, Hyo-Taek (Department of Energy Resources Engineering, Seoul National University) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • Published : 2009.10.28

Abstract

Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

미생물학적 황산염 환원은 황산염을 전자수용체로 이용하는 황산염 환원 박테리아에 의해 황산염이 황화이온으로 변환되는 과정이다. 형성된 황화이온은 주변의 용존 금속 이온과 결합하여 용해도가 낮은 금속 황화물로 침전된다. 이 연구에서는 비소와 중금속으로 오염된 송천 금은광산 일대 토양을 대상으로 하여 토착 박테리아에 의한 황산염 환원을 유도함으로써 독성 원소의 원위치 고정화 기술의 효율성을 평가하였다. 왕수 분해 결과, 대상 토양 내 비소, 구리, 납의 함량은 각각 1,311 mg/kg, 146 mg/kg, 294 mg/kg 등으로 나타나 특히 비소의 오염이 심각한 상태였다. 회분식 실험 결과, 미생물학적 황산염 환원에 의하여 pH 증가, 산화환원전위 감소, 황산염 함량 감소, 비소와 구리 함량 감소 등이 관찰되었다. 이 때 가장 높은 중금속 침전 효율을 유도하는 탄소원과 황산염의 농도 범위는 각각 0.2~0.5%, 100~200 mg/L로 나타났다. 미생물학적 또는 화학적으로 황화물 침전을 유도하게 고안된 컬럼 실험 수행 결과, 비소와 구리는 두 컬럼에서 모두 98% 이상 제거되었다. 그러나 산소를 다량 포함한 용액을 주입한 후, 화학적으로 황화물 침전을 유도한 컬럼에서는 즉각적인 비소와 구리의 재용출 현상이 나타났으나, 미생물학적 황산염 환원을 유도한 컬럼에서는 침전물이 30일 이상 장기간 안정성을 보였다. 미생물학적 컬럼 내에 형성된 검은색 침전물을 분석한 결과 FeS와 CuS로 나타났으며 비소는 대부분 철 황화물에 흡착되어 있는 것으로 확인되었다.

Keywords

References

  1. Abdelouas, A., Lutze, W., Gong, W., Nuttall, E.H., Strietelmeier, B.A. and Travis, B.J. (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci. Tot. Environ., v.250, p.21-35 https://doi.org/10.1016/S0048-9697(99)00549-5
  2. Bostick, B.C., Chen, C. and Fendorf, S. (2004) Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environ. Sci. Technol., v.38, p.3299-3304 https://doi.org/10.1021/es035006d
  3. Bostick, B.C. and Fendorf, S. (2003) Arsenite sorption on troilite(FeS) and pyrite(FeS2). Geochim. Cosmochim. Acta, v.67, p.909-921 https://doi.org/10.1016/S0016-7037(02)01170-5
  4. Chang, I.S. and Kim, B.H. (2007) Effect of sulfate reduction activity on biological treatment of hexavalent chromium[Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere, v.68, p.218-226 https://doi.org/10.1016/j.chemosphere.2007.01.031
  5. Geets, J., Borremans, B., Vangronsveld, J., Diels, L. and van Lelie, D. (2005) Molecular monitoring of SRB community structure and dynamics in batch experiments to examine the applicability of in situ precipitation of heavy metals for groundwater remediation. J. Soils Sediments, v.5, p.149-163 https://doi.org/10.1065/jss2004.12.125
  6. Gibson, G.R. (1990) Physiology and ecology of the sulphate-reducing bacteria, J. Appl. Bacteriol., v.69,p.769-797 https://doi.org/10.1111/j.1365-2672.1990.tb01575.x
  7. Ha, W.-K., Lee, J.-U. and Jung, M.C. (2006) Study on geomicrobiological reductive precipitation of uranium and its long-term stabilization. J. Korean Soc. Geosystem Eng., v.43, p.331-338. (in Korean)
  8. Keimowitz, A.R., Mailloux, B.J., Cole, P., Stute, M., Simpson, H.J. and Chillrud, S.N. (2007) Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy. Environ. Sci. Technol.,v.41, p.6718-6724 https://doi.org/10.1021/es061957q
  9. Kloke, A. (1979) Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. UN-ECE Symp. 325p
  10. Lee, J.-U., Lee, S.-W., Kim, K.-W. and Yoon, C.-H. (2005a) The effects of different carbon sources on microbial mediation of arsenic in arsenic contaminated sediment. Environ. Geochem. Hlth., v.27, p.159-168 https://doi.org/10.1007/s10653-005-0133-4
  11. Lee, J.S., Chon, H.T. and Kim, K.W. (2005b) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ. Geochem. Hlth., v.27, p.185-191 https://doi.org/10.1007/s10653-005-0131-6
  12. Lee, J.-U., Lee, S.-W., Kim, K.-W., Lee, J.-S. and Chon, H.-T. (2006) Geomicrobiological effects on arsenic behavior in anaerobic sediment from abandoned gold mine area. J. Korean Soc. Geosystem Eng., v.43, p.448-457. (in Korean)
  13. Lim, H.S., Lee, J.S., Chon, H.T. and Sager, M. (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J. Geochem. Expl., v.96, p.223-230 https://doi.org/10.1016/j.gexplo.2007.04.008
  14. Metcalf, E. (2003) Wastewater engineering: treatment disposal and reuse. McGraw Hill, 780p
  15. Newman, D.K., Beveridge, T.J. and Morel, F.M.M. (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol., v.63, p.2022-2028
  16. Postgate, J.R. (1984) The sulphate-reducing bacteria, 2nd Ed. Cambridge University Press, 145p
  17. Song, D.-S., Lee, J.-U., Ko, I.-W. and Kim, K.-W. (2007) Study on geochemical behavior of heavy metals by indigenous bacteria in contaminated soil and sediment. Econ. Environ. Geol., v.40, p.575-585. (in Korean)
  18. Suthersan, S.S. (1997) Remediation engineering: design concepts. Lewis Publishers, 384p