• Title/Summary/Keyword: Array Design

Search Result 2,284, Processing Time 0.032 seconds

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Design Space (직교배열표를 이용한 이산공간에서의 최적화 알고리듬 개발)

  • Lee, Jeong-Uk;Park, Jun-Seong;Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1621-1626
    • /
    • 2001
  • The structural optimization have been carried out in the continuous design space or in the discrete design space. Methods fur discrete variables such as genetic algorithms , are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete des inn space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions leer constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

Super multi-view 3-D display system based on focused light Array using reflective vibrating scanner array (ViSA)

  • Ho-In Jeon;Nak-Hee Jung;Jin-San Choi;Young Jung;Young Huh
    • Broadcasting and Media Magazine
    • /
    • v.6 no.2
    • /
    • pp.84-101
    • /
    • 2001
  • In this paper, we present a primitive system design of a super multi-view(SMV) 3-D display system based on a focused light array(FLA) concept using reflective vibrating scanner array(ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving left and right an array of curvature-compensated mirrors or diamond-ruled reflective grating attached to a vibrating membrane. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept proposed by Kajiki at TAO(Telecommunications) Advancement Organization). The proposed system has great advantages in the sense that it requires neither huge imaging optics nor mechanical scanning pals. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, may replace polygon mirror-based scanners in the near future.

  • PDF

Numerical Experiments on the Stability of Euler Equations of the Performance Test of Safety Structures (안전 구조물의 퍼포먼스 측정시 나타나는 Euler 방정식의 수치해석적 안정성)

  • 고만기;우광성
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.83-93
    • /
    • 1994
  • To design and study the dynamic performance of safety structures, crash tests are needed. Method to get the angular accelerations at the time of impact by integating the Euler equations are introduced. Numerically stable 9-array system contains several 7 and 8-array sub-systems in it. Numerical stability of those latent sub-systems are studied using test files. All of the 8-array subsystems were found to be numerically stable. Six of the 7-array sub-systems were stable and other six of the 7-array sub-systems were unstable. Using this findings fail-safe measurement system can be developed.

  • PDF

Design of a wideband cymbal transducer array (광대역 심벌 트랜스듀서 배열 설계)

  • Kim, Donghyun;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.170-178
    • /
    • 2020
  • Cymbal transducers are often used as an array rather than single because they have a high quality factor and low energy conversion efficiency. When used as an array, there occurs a big change in the frequency characteristics of the array due to the interaction between constituent transducers. In this study, we designed the structure of a cymbal transducer array to have ultra-wideband characteristics using this property. First, cymbal transducers with specific center frequencies were designed. Then, a 2×2 planar array was constructed with the designed transducers, where the cymbal transducers were arranged to have same or opposite polarization directions. For this structure, we analyzed the effect of the difference in the center frequency of and the spacing between the constituent transducers on the acoustical characteristics of the array. Based on the analysis, we designed the structure of the cymbal transducer array to have the widest possible bandwidth.

Iteration-based Array Analysis for Conceptual Design of Active Sonar Arrays (능동 소나 배열의 개념 설계를 위한 반복법 기반 배열 해석)

  • Noh, Eunghwy;Chun, Wonjong;Ohm, Won-Suk;Been, Kyounghun;Moon, Wonkyu;Chang, Woosuk;Yoon, Hongwoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-233
    • /
    • 2017
  • The array equations are commonly used for analysis and conceptual design of active sonar projector arrays. Calculation of the radiation impedance matrix poses a major computational bottleneck for the solution of the array equations, which leads to a dramatic increase in computational load as the number of constituent transducers increases. Here, we propose an iteration-based solution method that does not require the calculation of the radiation impedance matrix, as a computationally efficient alternative to the status quo. The validity of the iteration-based analysis is judged against the full finite-element analysis that includes the entire array as well as the medium. The array equations for the 1/3-sector of a cylindrical array comprised of 48 Tonpilz transducers are augmented by the lumped element models, and are solved iteratively for the acoustic and electro-mechanical characteristics. The iteration-based analysis exhibits rapid convergence and accuracy comparable with the FE analysis. Simulations also reveal that the acoustic coupling between transducers has more pronounced effects on the electro-mechanical characteristics of individual transducers than the acoustic performance of the array.

Design and Development Research of a Parametric Array Transducer for High Directional Underwater Communication (고지향 수중 통신을 위한 파라메트릭 어레이 트랜스듀서의 설계 및 개발 연구)

  • Hwang, Yonghwan;Je, Yub;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.117-129
    • /
    • 2015
  • A parametric array is a nonlinear phenomenon that generates a narrow beam of low-frequency sound using the nonlinearity of the medium. The low-frequency sound so generated has a low sound pressure compared with that of sound generated directly. Consequently, a transducer that can generate a primary wave with high directivity and level is required. This study designed, fabricated, and evaluated a multi-resonance transducer as a parametric array source. The designs of the unit transducers and array transducer were based on an analysis model. The design process was repeated to fabricate the optimum transducer. The fabricated transducer array can generate a 189 dB, 190 dB primary wave level at 6.3 m and a 134 dB difference frequency wave using the parametric array phenomenon. The difference frequency wave has a frequency of 15 kHz and high directivity with an $8^{\circ}$ half power beam width in a $12{\times}18{\times}10m$ water tank.

Design of Sub-array Receiver for Active Phase Array Radar (능동위상배열 레이더 부배열 수신기 설계)

  • Yi, Hui-min;Kim, Do-hoon;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • Modern Radars are evolving into MFRs which can search multiple targets simultaneously and then track them. Additionally they should be able to avoid some external jamming signals. Applying to these MFRs, Antennas should be able to perform DBF including to not only real-time beam steering but also multi-beam forming simultaneously. And they can cancel the beam at the specific direction. In this paper, we describe the implementation of sub-array type antenna hardware which can be applying DBF. Also we propose the modified amplitude aperture distribution for suppressing the side lobe level and explain the sub-array receiver design with amplitude tapering. It consists in making the amplitude weighting in 2 steps. In order to compare two weighting cases, we investigate the G/T performance for the array antenna. At the conclusion, we make a comparative study for the dynamic range of every sub-array receiver and present the hardware implementation that is more advantageous for sub-array alignment and calibration in DBF.

A Study On The Microstrip Slot Array Antenna Design (마이크로스트립 슬롯 배열 안테나 설계에 관한 연구)

  • 한석진;박익모;신철재
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.147-150
    • /
    • 1999
  • A T-shaped microstripline-fed printed slot array antenna having wide bandwidth, high gain, and narrow bandwidth is presented in this paper. The proposed antenna is analyzed by using the transmission line model method. We fabricated 4$\times$1 microstrip slot array antenna and measured its return loss and radiation pattern. The maximum bandwidth of this array antenna is from 1.43 ㎓ to 2.60 ㎓, which is 58.1% for the VSWR $\leq$ 2.

  • PDF

The Design of Microstrip Array Antenna using Chebyscheff Polynomial (Chebyscheff 다항식을 이용한 Microstrip Array Antenna의 설계)

  • 이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.542-548
    • /
    • 1989
  • Rectangular microstrip antenna array using Chebyscheff polynomial is designed. The required relative currents in the rectangular microstrip array antenna are 1:2:2:1. The input admittance and returen loss of array antenna are calculated from transmission line model circuit include feed line. The calculated resonant frequency valused are in good agreement with measured values. Also, the sharp beam scanning characteristic of perfect electronic method is presented.

  • PDF

Design of Problem Size-Independent Systolic Array for Polyadic-Nonserial Dynamic Programming (Polyadic nonserial 동적 프로그래밍을 위한 문제크기에 독립적인 시스톨릭 어레이의 설계)

  • 우창호;신동석;정신일;권대형
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.67-75
    • /
    • 1993
  • In many practical applications of systolic array, it is common that the problem size(n) is larger than the array size(M). In this case, the problem has to be partitioned into block to fit into the array before it is processed. This paper presents a problem partition method for dynamic programming and 2-dimensional systolic array suitable for it. Designed array has two types of array configur-ation for processing the partitioned problem. The queue is designed for storing and recirculating the intermediate results in the correct location and time. The number of processing elements and queues required are M(3M+1)/2, 4M respectively. The total processing time is 2(M+1)+(n+10M+3)(n/M-1)(n/M-1)/6.

  • PDF