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Numerical Experiments on the Stability of Euler Equations
of the Performance Test of Safety Structures
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Abstract

To design and study the dynamic performance of safety structures, crash tests are needed. Method
to get the angular accelerations at the time of impact by integating the Euler equations are
introduced. Numerically stable 9-array system contains several 7 and 8-array sub-systems in it. Numeri-
cal stability of those latent sub-systems are studied using test files. All of the 8-array sub-systems
were found to be numerically stable. Six of the 7-array sub-systems were stable and other six of the
7-array sub-systems were unstable, Using this findings fail-safe measurement system can be devel-

oped.
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Introduction

To design and assess the dynamic perform-
ance of the roadside safety structures, con-
sideration must be given to the dynamic re-
sponse of vehicle and their occupants during
the interaction with roadside strutures such as
guardrails, bridge rails, median barriers, crash
cushions, sign posts and utility poles etc. The
National Corporrative Highway Research
Program(NCHRP) report 230(Michie 1981) is
the document currently used in the USA to
evaluate the performance of safety features.
The concept of evaluation in the report is that
the dynamucs of the vehicle are measured and
injury descriptors such as relative impact vel-
ocity with which the occupants impacts the
vehicle interior and maximum deceleration ex-
perienced by the vehicle after the occupant
impact are calculated, These injury descriptors
are calculated by the flail space model which
is two dimensional in nature and has the limi-
tation to describe the detailed interaction of
occupant and impacting vehicle.

For the better understanding of the mechan-
ism of interaction between the occupant and
impacting vehicle, it is important to measure
the vehicular motion precisely at its impact
against the safety structures. If we consider
the impact vehicle as a rigid body, six degree
of freedom i.e., three translational acclerations
and three angular accelerations are needed to
describe the motion completely.

Transducer to mearsure the translational
accelertion is available. But the angular accel-
eration is not electronically measurable. Many
researchs have been conducted to solve the
problem and the reliable and-widely used
method to find angular acceleration is to
strategically place the translational
transducers (accelerometers) on the rigid body

and use the Euler equations. This technique is

called the accelerometry. It is widely known
that minimum 6 accelerometers are needed to

set up the system differential equation for the
angular accelerations. This method, however,
is known to be numerically unstable for a cer-
tain motion because of the complexity of the
resulting equation. On the other hand, if 9
accelerometers are used, resulting system dif-
ferential equation become simpler and the nu-
merical instability will not be a problem
(Padagaonka 1975).

One point to be noted in the 9 accelerometer
system is that the system comprises several
number of 7 and 8 accelerometer system. In
this study, the method to find the system dif-
ferential equations of the 6 and 9 acceler-
ometer systems will be presented. Also the
system equation of the 7 and 8 accelerometer
system latent in the basic 9 array will be found
and the numerical stability of the resulting
system differential equations will be studied
using some of the Texas Transportation Insti-
tute(TTI) test files. In the study, possible
measurement errors will be disregarded and
TTI test files will be regarded as error-free
kinematic quantities,

Analytical Formulations

Considering there is no movement of a point
P relative to body fixed coordinates, the absol-
ute acceleration of a point P on a rigid body
(Fig. 1) will be obtained by the following
Euler equations(Beer 1988)

t=R+j
=ﬁ+d))<p+w><(w><p) (1)

This vector equation has three component
equations as follows :
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A= AuFoxwypiy T wxw2piz

— (@bt wb) pixtdypiz — dupiy (2.a)
Ay= Aoyt wrwypiutwyw.pi;

— (wiwd) piy— dxpin+opix (2.b)
Air=Ag+0xw:pix T wyw,piy

— (it 0d) pit+dxpiy — Bypix (2.c)

where

- Ay, Ay, Az:x, y, z components of
translational acceleration at point i

+ Aox, Aoy, Aot components of translational
acceleration at the origin of rigid body fixed
coordinate system

- @, Wy, O, : angular accelerations

- wy, wy, ; . angular velocity components

* P Py Piz - coordinates of a point i in the
body fixed coordinate system,

It is possible to measure the angular
accelerations using Eqs. 2.a, b, ¢ by way of
several techniques,

L}

X

Fig. 1 Rigid Body Motion in a Moving Coordinate System

Six Accelerometer Array(3-2-1 Configuration)

Consider the six accelerometer configuration
in Fig. 2. In this configuration three
accelerometers are placed at the origin(0, 0, 0)
in the x, y and z direction ; two at (pyy, 0, 0) in

the y and z direction and one at (U, py, 0) in
the z directions, These 6 linear transducers
will give the readings of Ao, Ay, A, Aly, Ap
and Ag. Substituting the location coordinates
of each transducer into Eq. 2, A;;, Ay and Ay

can be written as follows :

Alz =Aoz"i"wxwzplx - cl')yplx
A=Ayt owwyp1xtdupix (3
Ap= Aot @ywspay — Oxpry

These will vield the following three
equations for angular accelerations :

.- (AZZ_Aoz)

o= 2
Py

. ( 2~ L3z

wy,—__u_l_{_wxwl (4)
Plix

.- (AIY_A)y)

W= WxWy
Pix

Fig. 2 Six Accelerometer Array

It can be seen that the angular accelerations
in Eq. 4 require prior knowledge of the angular
velocities about x, y and z axes. These
differential
equation can be solved numerically using the
Euler method, Runge-Kutta method, etc.. Ax

nonlinear, coupled ordinary
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is not used in the equation but it is necessary
to construct an acceleration field of the rigid
body. Ao, Aoy and A, are used as the
translational acceleration at a reference point.
This is the idea which makes 3-2-1 array. For
this system to worfg the resulting differential
equation must be numerically solvable for
angular accelerations without any significant
errors. Experimentally it has been shown that
the system equations of the 3-2-1 array is not
stably integrable for angular accelerations,
This problem is due to the coupled nonlinear
terms in the equations., To solve the problem,
attempts have been made to remové the
coupled terms by placing more translational
accelerometers and 9 accelerometer system is
a success{Padagaonka 1975).

Nine Accelerometer array(3-2-2-2 Configur-
ation) :

An alternative way to circumvent the diffi-
culties encountered during the numerical inte-
gration of the equation resulting from 6-array
accelerometry is to use a nine accelerometer
array as shown in Fig. 3. This new configur-
ation is formed by adding three accelerometers
Az, Az and Ay to the 3-2-1 configuration.
These three added accelerometers will give
three additional nonlinear coupled ordinary dif-
ferential equations. By algebraically
manipulating these three equations with
existing ones, coupled nonlinear angular vel-
ocity terms can be removed.

The three additional acceleration readings
will give three additional differential equations
similar to Eq. 3. Considering the location
coordinates, Eq. 2 will give the following 3
equations :

Agy= Aoyt yw,p3— dxpz
Ax=Au+0xwip3t dyps (5)
Ap=Anxtxwypry— dopay

Then Eq. 5 can be rewritten in a form simi-
lar to Eq. 4 as follows :

a&=———(A°y_Aay) +wyw,

Pz

a')y=-(—éaﬂ“—)—wxwz (6)
Px

cbz= (on"A(Zx) +(way
Py

By algebraically adding Eq. 4 to Eq. 6, we
can eliminate the cross products of the angular
velocity components from the differential Eqgs.
4 and 6. Then the angular acceleration can be
calculated without reliance on values of
parameters calculated at the previous time
step. This is the idea of the 9 accelerometer
array(3-2-2-2 configuration). The resulting
equations for angular accelerations are as
follows :

©1:,0,0)

Fig. 3 Nine Accelerometer Array
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. (Ay—Ag) | (Ay—Ay)
O

2pzy l 203:

d)y (AOZ_—AIZ) + (A3x_l%x) (7)
2p1x 2p3

. (Ay—Ay) | (Au—A)

W= T
2p1x 2poy

Latent Systems & Numerical Experiments

It should be noted that the 3-2-2-2 array
comprises several different forms of seven and
eight array systems. The possible latent
systems and corresponding system equations
are in Appendix A,

System equation are derived using Eq. 2 and
following the procedures explained in the pre-
vious section,

The naming of the latent system is
composed of one number followed by X, Y or
Z. The first number represents the node on
which the seismic center of a transducer is
located. For example, ‘0’ means the transducer
is located at the origin of the body fixed coor-
dinate system, ‘1’ means the node is on the x
axis, ‘2’ on the y-axis, ‘3’ on the z-axis re-
spectively. Following X, Y, Z represents the
principle sensitivity axis of the transducer
along which the accelerations are to be
measured. In this study, the ID represents the
missing accelerometer from the basic 9 ac-
celerometer array(3-2-2-2 configuration), For
example, 1Y represents an eight array system
which is same as 9 array(3-2-2-2 configuration)
except the fact that the transducer at node 1
in the Y direction dose not exist. Similarly, if
the system ID is composed of “NUMBER
AXIS NUMER AXIS", it means two
accelerometers are missing from the basic
9-array system. For example, 1Y1Z is a seven
array system which is same as 9 array system

(3-2-2-2 configuration) except the fact that
transducers at node 1 in the Y and Z directions
do not exist.

The main purpose of this study is to check
whether the resulting system equations of the
latent system are stably integrable or not.

For the study, 6 number of TTI test files,
7110-10, 7110-12, 7110-4, 7110-2(Ross et al,
1991), 7043-2, 7043-1(Ross et al, 1988) were
used. Those test files have significant meaning
in studying the numerical stability of the sys-
tem differential equations. Beacuse, if we use
a hypothetically well behaved functions like
sinusoidal functions in the stabilty study, it
may give a stable output which is not the case
for the experimental data. To study the stab-
ility of the system equations, therefore, it is
important to use a signal which is similar to
the output of the crash tests performed for the
design of safety structures. TTI measured 3
translational accelerations and three angular
velocities but not angular accelerations. In this
study, angular velocities are differentiated and
regarded as measured angular accelerations,
This process is not recommendable since the
process of differentiation a “noisy” data is
basically an unstable process-meaning that
small errors made during the process cause
greatly magnified errors in the final results,
But in the numerical experiment, assume that
the differentiation of measured angular vel-
ocity is the way to get the angular acceler-
ation which represents the crash test
enviromentals most closely.

The procedure to check the numerical stab-
ility is as followes :

STEP 1. For each of the system equation of
the latent systems, move all the angular vel-
ocity terms to the left hand side

SETP 2. Caculate the angular acceleration
or angular acceleration plus angular velocity
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coupled terms using the TTI test files. Those
values will be regarded as the algebraic sum of
the transducer readings which appears on the
right side of the system equations,

STEP 3. Now, all the unknowns are on the
left hand side and the right hand side is the
known constant, These are typical nonlinear
first order coupled differential equations. In
solving the problems for angular velocity and
angular accelerations, FEuler method or
Runge-Kufta method can be used. In this
study R-K 4th order method will be used.

STEP 4. Compare the calculated angular
accelerations with the angular accelerations of
the TTI test files, If they overlay each other,
the system can be regarded as numerically
stable, otherwise not.

Lm Test Files: APPENDIX B Q=z(av, ey, ®,) ]

TTI test files used for the numerical
experiments are in Appendix B. They cover
wide range of time duration, amplitude and
frequency of various kinds of crash test
environments. The results of the experiments
are summerized in Table 1. In the table, ‘o’
represents a stable system, ‘x’ represents un-
stable ones and ‘A’ represents stable results
with some instabilities after a certain period of
time. From the summary table, it can be noted
that some of the seven accelerometer systems
are stable and some are not, and all the eight
accelerometer system are stable, The systems
that showed consistent stabilities among 7 ar-
ray are 1Y1Z, 2X2Z, 3X3Y, 1Y3Y, 1Z2Z and
2X3X., Other systemm showed instabilities
consistantly.

Table 1. Summary of Fidelity Study of 7, 8 and 9 array
System(Runge-Kutta 4th order, Time step :

0.001sec)
lﬂﬂ‘aremine Q for O =(és, by, ) T
1 I.D. |7110-10|7110-12| 7110-4 | 7110-2 | 7043-1 | 7043-2

Systea Differsntial F.quatlons APFDOIX A 1Y1Z O O O O O O

G by = e X207
C trom Q sed & 2X2 O O O O @] @]
[ 3X3Y ] O O O O O
Solve the system Differential Equation I 1Y2Z x x X X X x
for :ﬂ:::: 1Y3X | x x x x a | &
1Y3Y O O O O Q @]
Compare @ with 0 122X X X X X A A
if @@= the system is stable 1222 O e) @) O O O
if @%*Q the systes is unstable 1Z3Y x x x X X X
y 2X3X O O O O @] @]
Y VAVAVAVA QO : in Table 1 2X3Y x x X X x X
F— Inpoty 2Z3X X X X X X X
2X O O Q O O O
- ) Z O O O O O O

AA A AN 2

AL \/ a:in Table 2 3y o 0 o) 0 O Ie)
Time loputidy 3X O @] ] O O O
1Y ©) 0] O O @] @]
.&r}\ A‘i/\ I /\ X : in Table 3 1Z ) o Q @ © o
M-’ \xnpum‘e S ARRAY O O @] O @) O

Time (32-2-2)

Fig- 4 Flow Chart of System Fidelity Study
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Conclusion & Recommendations

To design and study the dynamic perform-
ance of safety structures, crash tests are
needed.

Method to get the angular accelerations at
the time of impact by integating the Euler
equations are introduced. Minimum 6
transducers are necessary to set up the system
differential equations, The 6-array system is
known to be unstable due to the angular vel-
ocity coupled terms. By adding 3 trandsducers
to the 6-array system, coupled terms can be
removed~and system becomes stable, This is
the 9-array system(3-2-2-2 configuration),

In this study, 7 and 8-array systems latent in
the basic 9-array systems are identified.

System differential equations of those latent
sub-systems are introduced and numerical
stability of the equations are studied using
seven TTI test files.

All of the 8-array sub-systems(1Y, 1Z, 2X,
2Z, 3Y, 3X) were found to be numerically
stable. Six of the 7-array sub-systems(1Y1Z,
2X2Z, 3X3Y, 1Y3Y, 1Z2Z, 2X3X) were stable
and other six of the 7-array sub-systems(1Y2Z,
1Y3X, 1Z2X, 1Z3Y, 2X3Y, 2Z3X) were un-
stable., Using this findings fail-safe measure-
ment system can be developed to measure the
angular accelerations when one or two df the
trandsducers in the basic 9-array system are in
trouble or malfunction.

This finding is limited to the perpect sys-
tem. In actual system, transducers may have
certain kind of deterministic errors and system
may be misaligned. If those errors ére con-
sidered, system differential equations  will be
different from error-free case. Developing a
mathmatical model to properly consider those
errors and finding a strategy to remove those

errors in the experiment will be a valuable fu-
ture research.
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Appedix A. Seven and Eight Latent Systems in
the Basic 9-array(3-2-2-2 Configuration) Sys-
tem

A. Eight Accelerometer Array Systems
Latent in the 3-2-2-2 System

1Y 2 oz = (Axe = Aue)/202 + (Aey = Asy)/202
Gy = (Aas = A1:)/2ps +(Ase — Aas)/2ps
) | y G = (Aox = As:)/ P2 + wew,
1
1z H 2 = (Az ~ As:)/2p1 + (Asy — Aay)/2p3
&y = (Ass = Ave)/p3 - wew,
J y @; = (Ary = Asy)/201 + (Ass — A2.)/2p2
1
2X H : -
Se = (A2 = Aa:)/2p2 + (Ao, — A3,)/20,
wy = (Aus ~ A1:)/20) + (A, - Aez)/2p3
3 7 9= Ay - Ag)/ e —wew,
1
2 H G = (Agy - A3}/ P32 + wyw,
@y = (Ao, ~ A1)/20, +(Ass ~ Ae)/2p4
) y e = (A1y = Asy)/2p1 + (A, ~ A22)/2p2
1
3y 2

-

2
<o = (A2 = Aoe)/p2 — vy,
i Dy = (Aus = A1)f2p + (Asy — Aer)/2ps
+ Wy = Ay~ Aay)/20, + (Aer ~ A1)/ 202
1

Gr = (Agg ~ Ao:)/2p2 + (Aey ~ A3,)/2p3

Sy = (4o — Ay, VP + wew:

we = (diy = Aoy }/201 + (Ape - A2:)/2p,

0X

. y

1

oy i

b Z 4

1
0z z
o (] y

Gy = (Aze ~ Ao:)/202 + (Asy — Asy)/2p2
Dy = (Aes ~ A1)/ Py + waw:

b = (Ayy = Ay} — wew,

Dg = (A2: — Ao}/ p2 - wyw.
Sy = (Ae: ~ A1:)/201 + (Ase — 10:)/2p2

<= (Ao — A2.)/ 02 - Wy

“e = (Aey — Aay)/py + wyw:
=y = {dae ~ Ao:)/ P2 — wrw:

<z =(4y, - 40;)/20 ~ (Hor — 12,). 202

B. Seven Accelerometer Array Systems
Latent in the 3-2-2-2 System

~

Y12 'l

2X22 b

T

x = (Az: ~ Ae:)/2p3 + (Asy = Asy)/2p9
Ly = (Asx — Aae)/ps ~ wpw:

@z = (Ane ~ A2e)/p2 + wawy

< = (Aay = Asy)/p3 + wyw,
<y = (Ane ~ A1:)/201 + (Ase — Asc)/203

<z = A1y = Any}/p1 — wew,

e = (AT: - Ao;)/h - Wy
Sy = (As: — 41.)/p) ~ waw.

< = (A1 — Aoy)/201 — (Aox — A2:)/202
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1Y3X H

MY

123Y z
s
] z
x
2X3X z
l ~ ] y

e = (Any = Agy)/ o3 + wyws
oy = (Ae: — A3:)/20 + (s ~ Aea2)/20s

w: = (Aox — A2s)/ P2 — waety

Jg = (A1s ~ Ae:)/202 + (Aey ~ A3))/ 202
&y = (A — Ao 5 e

Oy e (Agx = A2:)/ P2 = wpty

Ge = (Ars = Ag:)/p3 ~ wyw's
Sy = (Aey ~ A1), 20 = (A3 = 44:)/200

O: = (Aer = A2e). P2 — wewy

Gp = (A2s — Ae:)/201 + (Aey = A3,))/202
Oy = (Ase — Aez)/ps = wrw:

Oy = (Ayy — Aey)/Pr = wrwy

S = (Aey = A3y) P2 T Sy
iy = (Ase = A02)/P2 — wew:

B: = (Aiy ~ A0,)/201 = (dor ~ 42:)/2p2

wr = (Ag: = Aoz )/ P2 — @y
Gy = (Ase = Aee)/P3 ~ waw:

J: = (A1y — A6y )/201 = (Aos — A2e)/202

@z = (Aze = Aa1)/2p2 + (Asy ~ Asy)/ 29
Oy = (Aes = A1)/ P21 + wrw:

Oe = {Ary — Any) ey = wewy

2X3Y z vz = (A2: — Aa:)/pa — wywi:
/‘3 Ly = (do: — 43:)/2p1 < (Ase — d0:)/20s

<= (-411 - A‘v)/l’l - wrey

223X < = (Aoy = A3y )Py — wyw:
2
i

v J: = (41 = 40,)/201 = (Aor — 42:)/202
! e ]

Appendix'B. TTI Test Files Used for the Numeri-
cal Experiments

oy = (Ae: — A1)/ o + wows

-—evx
e
oan
L]
L]
]
. ~omn.
B
- (Y] [V} ) 3 (7] “ "
VIR
ety
-
-
.
—otmms
. . - . 3 » . [
TREG)
s
-
o
o4
e
B el
. - . - “ ., - “
]

FIGURE B. 1 Input Data : 7110-10 o, o o,
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AN ACCRL b NET) ARG ACTHL (Ra8/(3°9))

AN ACCRL B /(59N

ARG ACCEL (RS /0230 AN ACCEL {RAD /(3*3))

ANG ACTRL (RAD /(S3))

-wory
< ..
-
-
3
a0
-
~vns.
.- .- £Y] ] - 1 “ 2]
]
oty
L2
e
-
.
L
e
-
. .- [ .- . Y] " "
‘Tamisec)
.oty
s
-
o4
e 4
s
~ouse.
.~ . .~ . ] . “ 4
TREENC)

FIGURE B. 2 Input Data : 7110-12 &, oy, @,

wworx
aoees.
-eer
«
~oamae
~antns
[ . . o o - .- . s o "
TRIECIEC)
weotr
20ee

~venne
~eoecs
. . . . . .
TOSE(3EC)
woorz
L)
—an—
—anse
o o o . .
TRE(EC)

FIGURE B. 3 Input Data : 7110-4 o, oy o,

NS ACCEL (RAD/(S73))

ANGACTIL (RB/(5°8))

ANG_ACCRL. (RAS/(3°3)}

M _ACCEL (RAD/(R°SY)

ANG ACCEL. (RAD /13°3))

A A
V'v‘ Vi

.
H

FIGURE B. 4 Input Data : 7110-2 o o o,

/\V.V/\V(\U(\VAVUA/\VA_AV o

- [ o - ™ o

TIMECSEC)

M/\\AAJ\/\/\MMm

VUVVU VVyu=rvvy

FIGURE B. 5 Input Data : 7043-1 o ay o,
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FIGURE B. 6 Input Data : 7043-2 oy, @y o,



