• Title/Summary/Keyword: Armendariz ideal

Search Result 6, Processing Time 0.019 seconds

ON WEAK ARMENDARIZ IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.333-342
    • /
    • 2008
  • We introduce weak Armendariz ideals which are a generalization of ideals have the weakly insertion of factors property (or simply weakly IFP) and investigate their properties. Moreover, we prove that, if I is a weak Armendariz ideal of R, then I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is a weak Armendariz ring. Also we obtain a generalization of [8] and [9].

A PROOF ON POWER-ARMENDARIZ RINGS

  • Kim, Dong Hwa;Ryu, Sung Ju;Seo, Yeonsook
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • Power-Armendariz is a unifying concept of Armendariz and commutative. Let R be a ring and I be a proper ideal of R such that R/I is a power-Armendariz ring. Han et al. proved that if I is a reduced ring without identity then R is power-Armendariz. We find another direct proof of this result to see the concrete forms of various kinds of subsets appearing in the process.

WEAK α-SKEW ARMENDARIZ RINGS

  • Zhang, Cuiping;Chen, Jianlong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.455-466
    • /
    • 2010
  • For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS

  • Abuosba, Emad;Ghanem, Manal
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1403-1418
    • /
    • 2019
  • Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.